用量子化学ONIOM(B3LYP/6-311++G(3df,3pd):UFF)∥ONIOM(B3LYP/6-31+G(d,p):UFF)方法,研究α-Ala在SWBNNT(9,9)与水复合环境的手性转变。分子结构计算表明:反应物S型α-Ala和中间体INT1在SWBNNT(9,9)与水复合环境,与单体相比,氢转移断的...用量子化学ONIOM(B3LYP/6-311++G(3df,3pd):UFF)∥ONIOM(B3LYP/6-31+G(d,p):UFF)方法,研究α-Ala在SWBNNT(9,9)与水复合环境的手性转变。分子结构计算表明:反应物S型α-Ala和中间体INT1在SWBNNT(9,9)与水复合环境,与单体相比,氢转移断的O-H和C-H键都略长,H与其要转移到的目标原子O的距离均短很多。反应通道研究发现:在SWBNNT(9,9)与水复合环境下,α-Ala手性转变有4条路径,每条路径上氢转移都能以1个或2个水分子为媒介实现。势能面计算发现:手性转变反应的最高能垒来自H从手性C向羰基O转移的过渡态;在氨基先异构接着羧基H转移和H从手性C向羰基O转移顺次实现的路径,并以2H2O为氢转移媒介时最高能垒被降到最小值153.8 k J·mol-1。比只在SWBNNT(9,9)内的302.7 k J·mol-1明显降低,比只在水环境的167.8 k J·mol-1也有所降低。结果表明:SWBNNT(9,9)与水复合环境,对α-Ala手性转变有较好的催化作用。展开更多
采用组合的量子化学ONIOM(our own n-layered integrated molecule orbit and molecule mechanics)(B3LYP/6-31++G(d,p):UFF)方法,研究了限域在SWBNNT(9,9)内α-丙氨酸的分子结构和手性转变通道.为得到高水平的能量,在ONIOM(B3LYP/6-311...采用组合的量子化学ONIOM(our own n-layered integrated molecule orbit and molecule mechanics)(B3LYP/6-31++G(d,p):UFF)方法,研究了限域在SWBNNT(9,9)内α-丙氨酸的分子结构和手性转变通道.为得到高水平的能量,在ONIOM(B3LYP/6-311++G(3df,3pd):UFF)水平,计算了各个包结物的单点能.分子结构分析表明:与单体α-丙氨酸相比,受限在SWBNNT(9,9)内时,骨架碳氮原子间的键长不同程度地缩短,骨架碳原子的键角及骨架碳氮原子的二面角略有增大.反应路径研究发现:α-丙氨酸分子在SWBNNT(9,9)内的手性转变有两条同单体情况大致相同的反应通道,不存在单体情况的含有羰基H和甲基H协同转移过程的反应通道.手性转变反应过程的势能面计算发现:与单体α-丙氨酸手性转变反应过程的主要能垒相比较,在纸外面的氢从手性碳直接到羰基氧的过渡态产生的能垒,从326.5kJ·mol-1降到319.7kJ·mol-1;氢首先在羧基内转移,而后手性碳的氢在纸面外转移到羰基,这两个过程的能垒从198.0kJ·mol-1和320.3kJ·mol-1降到135.5kJ·mol-1和302.7kJ·mol-1.结果表明:限域在SWBNNT(9,9)内的α-丙氨酸,其手性转变过程中不同的氢转移反应能垒被不同程度地降低.展开更多
采用量子力学与分子力学组合的方法,在ONIOM(MP2/6-311++G(3df,3pd):UFF)//ONIOM(B3LYP/6-31+G(d,p):UFF)理论水平,研究了不同尺寸的扶椅型单壁碳纳米管内,α-丙氨酸基于氨基做质子转移桥梁实现手性转变的反应机理.反应通道研究发现:在...采用量子力学与分子力学组合的方法,在ONIOM(MP2/6-311++G(3df,3pd):UFF)//ONIOM(B3LYP/6-31+G(d,p):UFF)理论水平,研究了不同尺寸的扶椅型单壁碳纳米管内,α-丙氨酸基于氨基做质子转移桥梁实现手性转变的反应机理.反应通道研究发现:在不同尺寸的扶椅型SWCNT内,手性转变反应均有a和b两个通道,a通道是手性C上的质子转移只以氨基上的N为桥;b通道是手性C的质子转移以羰基O和氨基N顺次为桥。势能面计算表明:SWCNT的孔径越小,反应能垒越低;在SWCNT(5,5)内,a通道最高能垒为198.7 k J·mol^(-1),比单体在此通道的最高能垒266.1 k J·mol^(-1)明显降低,b通道最高能垒为285.0 k J·mol^(-1),比单体在此通道的最高能垒326.6 k J·mol^(-1)也有明显的降低。结果表明:生命体内α-丙氨酸在纳米生物通道的手性转变过程主要是以氨基为质子转移桥梁实现;较小尺寸的纳米管反应器对α-丙氨酸手性转变反应的限域催化作用明显。展开更多
文摘用量子化学ONIOM(B3LYP/6-311++G(3df,3pd):UFF)∥ONIOM(B3LYP/6-31+G(d,p):UFF)方法,研究α-Ala在SWBNNT(9,9)与水复合环境的手性转变。分子结构计算表明:反应物S型α-Ala和中间体INT1在SWBNNT(9,9)与水复合环境,与单体相比,氢转移断的O-H和C-H键都略长,H与其要转移到的目标原子O的距离均短很多。反应通道研究发现:在SWBNNT(9,9)与水复合环境下,α-Ala手性转变有4条路径,每条路径上氢转移都能以1个或2个水分子为媒介实现。势能面计算发现:手性转变反应的最高能垒来自H从手性C向羰基O转移的过渡态;在氨基先异构接着羧基H转移和H从手性C向羰基O转移顺次实现的路径,并以2H2O为氢转移媒介时最高能垒被降到最小值153.8 k J·mol-1。比只在SWBNNT(9,9)内的302.7 k J·mol-1明显降低,比只在水环境的167.8 k J·mol-1也有所降低。结果表明:SWBNNT(9,9)与水复合环境,对α-Ala手性转变有较好的催化作用。
文摘采用组合的量子化学ONIOM(our own n-layered integrated molecule orbit and molecule mechanics)(B3LYP/6-31++G(d,p):UFF)方法,研究了限域在SWBNNT(9,9)内α-丙氨酸的分子结构和手性转变通道.为得到高水平的能量,在ONIOM(B3LYP/6-311++G(3df,3pd):UFF)水平,计算了各个包结物的单点能.分子结构分析表明:与单体α-丙氨酸相比,受限在SWBNNT(9,9)内时,骨架碳氮原子间的键长不同程度地缩短,骨架碳原子的键角及骨架碳氮原子的二面角略有增大.反应路径研究发现:α-丙氨酸分子在SWBNNT(9,9)内的手性转变有两条同单体情况大致相同的反应通道,不存在单体情况的含有羰基H和甲基H协同转移过程的反应通道.手性转变反应过程的势能面计算发现:与单体α-丙氨酸手性转变反应过程的主要能垒相比较,在纸外面的氢从手性碳直接到羰基氧的过渡态产生的能垒,从326.5kJ·mol-1降到319.7kJ·mol-1;氢首先在羧基内转移,而后手性碳的氢在纸面外转移到羰基,这两个过程的能垒从198.0kJ·mol-1和320.3kJ·mol-1降到135.5kJ·mol-1和302.7kJ·mol-1.结果表明:限域在SWBNNT(9,9)内的α-丙氨酸,其手性转变过程中不同的氢转移反应能垒被不同程度地降低.
文摘采用量子力学与分子力学组合的方法,在ONIOM(MP2/6-311++G(3df,3pd):UFF)//ONIOM(B3LYP/6-31+G(d,p):UFF)理论水平,研究了不同尺寸的扶椅型单壁碳纳米管内,α-丙氨酸基于氨基做质子转移桥梁实现手性转变的反应机理.反应通道研究发现:在不同尺寸的扶椅型SWCNT内,手性转变反应均有a和b两个通道,a通道是手性C上的质子转移只以氨基上的N为桥;b通道是手性C的质子转移以羰基O和氨基N顺次为桥。势能面计算表明:SWCNT的孔径越小,反应能垒越低;在SWCNT(5,5)内,a通道最高能垒为198.7 k J·mol^(-1),比单体在此通道的最高能垒266.1 k J·mol^(-1)明显降低,b通道最高能垒为285.0 k J·mol^(-1),比单体在此通道的最高能垒326.6 k J·mol^(-1)也有明显的降低。结果表明:生命体内α-丙氨酸在纳米生物通道的手性转变过程主要是以氨基为质子转移桥梁实现;较小尺寸的纳米管反应器对α-丙氨酸手性转变反应的限域催化作用明显。