To gain a comprehensive understanding of sources and health risks of trace elements in an area of China with high population densities and low PM_(2.5)concentrations,15 trace elements(Al,K,Ca,Ti,V,Cr,Mn,Fe,Ni,Cu,Zn,As...To gain a comprehensive understanding of sources and health risks of trace elements in an area of China with high population densities and low PM_(2.5)concentrations,15 trace elements(Al,K,Ca,Ti,V,Cr,Mn,Fe,Ni,Cu,Zn,As,Sn,Ba,Pb)in PM_(2.5)were monitored from December 2020 to November 2021 in a representative city,Xiamen.The concentrations of trace elements in Xiamen displayed an obvious seasonal variation and were dominated by K,Fe,Al,Ca and Zn.Based on Positive Matrix Factorization analysis,source appointment revealed that the major sources of trace elements in Xiamen were traffic,dust,biomass and firework combustion,industrial manufacture and shipping emission.According to health risk assessment combined with the source appointment results,it indicated that the average noncarcinogenic risk was below the threshold and cancer risk of four hazardous metals(Cr,Ni,As,Pb)exceeded the threshold(10^(-6)).Traffic-related source had almost half amount of contribution to the health risk induced by PM_(2.5)-bound trace elements.During the dust transport period or Spring Festival period,the health risks exceeded an acceptable threshold even an order of magnitude higher,suggesting that the serious health risks still existed in low PM_(2.5)environment at certain times.Health risk assessment reminded that the health risk reduction in PM_(2.5)at southeastern China should prioritize traffic-related hazardous trace elements and highlighted the importance of controlling vehicles emissions in the future.展开更多
In this paper,forward expansiveness and entropies of"subsystems"2)of Z^(k)_(+)-actions are investigated.Letαbe a Z^(k)_(+)-action on a compact metric space.For each 1≤j≤k-1,denote G^(j)_(+)={V+:=V∩R^(k)_...In this paper,forward expansiveness and entropies of"subsystems"2)of Z^(k)_(+)-actions are investigated.Letαbe a Z^(k)_(+)-action on a compact metric space.For each 1≤j≤k-1,denote G^(j)_(+)={V+:=V∩R^(k)_(+):V is a j-dimensional subspace of R^(k)}.We consider the forward expansiveness and entropies forαalong V+∈G^(j)_(+).Adapting the technique of"coding",which was introduced by M.Boyle and D.Lind to investigate expansive subdynamics of Z^(k)-actions,to the Z^(k)_(+)cases,we show that the set E^(j)_(+)(α)of forward expansive j-dimensional V_(+)is open in G^(j)_(+).The topological entropy and measure-theoretic entropy of j-dimensional subsystems ofαare both continuous in E^(j)_(+)(α),and moreover,a variational principle relating them is obtained.For a 1-dimensional ray L∈G^(+)_(1),we relate the 1-dimensional subsystem ofαalong L to an i.i.d.random transformation.Applying the techniques of random dynamical systems we investigate the entropy theory of 1-dimensional subsystems.In particular,we propose the notion of preimage entropy(including topological and measure-theoretical versions)via the preimage structure ofαalong L.We show that the preimage entropy coincides with the classical entropy along any L∈E1+(α)for topological and measure-theoretical versions respectively.Meanwhile,a formula relating the measure-theoretical directional preimage entropy and the folding entropy of the generators is obtained.展开更多
基金supported by the National Natural Science Foundation of China(No.U22A20578)the Science and Technology Department of Fujian Province(No.2022L3025)+3 种基金the Center for Excellence in Regional Atmospheric Environment Project(No.E0L1B20201)the Chaozhou Science and Technology Plan Project(No.2018GY03)Xiamen Atmospheric Environment Observation and Research Station of Fujian ProvinceFujian Key Laboratory of Atmospheric Ozone Pollution Prevention(Institute of Urban Environment,Chinese Academy of Sciences)。
文摘To gain a comprehensive understanding of sources and health risks of trace elements in an area of China with high population densities and low PM_(2.5)concentrations,15 trace elements(Al,K,Ca,Ti,V,Cr,Mn,Fe,Ni,Cu,Zn,As,Sn,Ba,Pb)in PM_(2.5)were monitored from December 2020 to November 2021 in a representative city,Xiamen.The concentrations of trace elements in Xiamen displayed an obvious seasonal variation and were dominated by K,Fe,Al,Ca and Zn.Based on Positive Matrix Factorization analysis,source appointment revealed that the major sources of trace elements in Xiamen were traffic,dust,biomass and firework combustion,industrial manufacture and shipping emission.According to health risk assessment combined with the source appointment results,it indicated that the average noncarcinogenic risk was below the threshold and cancer risk of four hazardous metals(Cr,Ni,As,Pb)exceeded the threshold(10^(-6)).Traffic-related source had almost half amount of contribution to the health risk induced by PM_(2.5)-bound trace elements.During the dust transport period or Spring Festival period,the health risks exceeded an acceptable threshold even an order of magnitude higher,suggesting that the serious health risks still existed in low PM_(2.5)environment at certain times.Health risk assessment reminded that the health risk reduction in PM_(2.5)at southeastern China should prioritize traffic-related hazardous trace elements and highlighted the importance of controlling vehicles emissions in the future.
基金Wang and Zhu are supported by NSFC (Grant Nos.11771118,11801336,12171400)Wang is also supported by China Postdoctoral Science Foundation (No.2021M691889)。
文摘In this paper,forward expansiveness and entropies of"subsystems"2)of Z^(k)_(+)-actions are investigated.Letαbe a Z^(k)_(+)-action on a compact metric space.For each 1≤j≤k-1,denote G^(j)_(+)={V+:=V∩R^(k)_(+):V is a j-dimensional subspace of R^(k)}.We consider the forward expansiveness and entropies forαalong V+∈G^(j)_(+).Adapting the technique of"coding",which was introduced by M.Boyle and D.Lind to investigate expansive subdynamics of Z^(k)-actions,to the Z^(k)_(+)cases,we show that the set E^(j)_(+)(α)of forward expansive j-dimensional V_(+)is open in G^(j)_(+).The topological entropy and measure-theoretic entropy of j-dimensional subsystems ofαare both continuous in E^(j)_(+)(α),and moreover,a variational principle relating them is obtained.For a 1-dimensional ray L∈G^(+)_(1),we relate the 1-dimensional subsystem ofαalong L to an i.i.d.random transformation.Applying the techniques of random dynamical systems we investigate the entropy theory of 1-dimensional subsystems.In particular,we propose the notion of preimage entropy(including topological and measure-theoretical versions)via the preimage structure ofαalong L.We show that the preimage entropy coincides with the classical entropy along any L∈E1+(α)for topological and measure-theoretical versions respectively.Meanwhile,a formula relating the measure-theoretical directional preimage entropy and the folding entropy of the generators is obtained.