The high Si-bearing 15Cr-9Ni-Nb metastable austenitic stainless steel weld metal was prepared via gas tungsten arc welding and then processed by stabilized heat treatment(SHT)at 850℃ for 3 h.The effects of 550℃ agin...The high Si-bearing 15Cr-9Ni-Nb metastable austenitic stainless steel weld metal was prepared via gas tungsten arc welding and then processed by stabilized heat treatment(SHT)at 850℃ for 3 h.The effects of 550℃ aging on the α'-martensitic transformation of the as-welded and the SHT weld metals were investigated.The results showed that the weld metal had poor thermal stability of austenite.The precipitation of NbC during the 850℃ SHT made the thermal stability of the local matrix decrease and led to the formation of a large amount of C-depleted α'-martensite.The precipitation of coarse σ-phase at the δ-ferrite led to the Cr-depleted zone and the formation of Cr-depleted α'-martensite at the early stage of 550℃ aging.The homogenized diffusion of C and Cr in the matrix during 550℃ aging led to the restoration of austenitic thermal stability and the decrease of α'-martensite content.The C-depleted α'-martensite content in the SHT weld metal decreased rapidly at the early stage of aging due to the fast diffusion rate of the C atom in the matrix,while the Cr-depleted α'-martensite decreased at the later stage of aging due to the decreased diffusion rate of the Cr.展开更多
基金supported by the National Key Research and Development Program of China(2018YFA0702902)the Innovation Project of Shenyang National Laboratory for Materials Science(SYNL-2022)the China Institute of Atomic Energy(E141L803J1).
文摘The high Si-bearing 15Cr-9Ni-Nb metastable austenitic stainless steel weld metal was prepared via gas tungsten arc welding and then processed by stabilized heat treatment(SHT)at 850℃ for 3 h.The effects of 550℃ aging on the α'-martensitic transformation of the as-welded and the SHT weld metals were investigated.The results showed that the weld metal had poor thermal stability of austenite.The precipitation of NbC during the 850℃ SHT made the thermal stability of the local matrix decrease and led to the formation of a large amount of C-depleted α'-martensite.The precipitation of coarse σ-phase at the δ-ferrite led to the Cr-depleted zone and the formation of Cr-depleted α'-martensite at the early stage of 550℃ aging.The homogenized diffusion of C and Cr in the matrix during 550℃ aging led to the restoration of austenitic thermal stability and the decrease of α'-martensite content.The C-depleted α'-martensite content in the SHT weld metal decreased rapidly at the early stage of aging due to the fast diffusion rate of the C atom in the matrix,while the Cr-depleted α'-martensite decreased at the later stage of aging due to the decreased diffusion rate of the Cr.