期刊文献+
共找到4,595篇文章
< 1 2 230 >
每页显示 20 50 100
Design of low-alloying and high-performance solid solution-strengthened copper alloys with element substitution for sustainable development 被引量:1
1
作者 Jiaqiang Li Hongtao Zhang +2 位作者 Jingtai Sun Huadong Fu Jianxin Xie 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期826-832,共7页
Solid solution-strengthened copper alloys have the advantages of a simple composition and manufacturing process,high mechanical and electrical comprehensive performances,and low cost;thus,they are widely used in high-... Solid solution-strengthened copper alloys have the advantages of a simple composition and manufacturing process,high mechanical and electrical comprehensive performances,and low cost;thus,they are widely used in high-speed rail contact wires,electronic component connectors,and other devices.Overcoming the contradiction between low alloying and high performance is an important challenge in the development of solid solution-strengthened copper alloys.Taking the typical solid solution-strengthened alloy Cu-4Zn-1Sn as the research object,we proposed using the element In to replace Zn and Sn to achieve low alloying in this work.Two new alloys,Cu-1.5Zn-1Sn-0.4In and Cu-1.5Zn-0.9Sn-0.6In,were designed and prepared.The total weight percentage content of alloying elements decreased by 43%and 41%,respectively,while the product of ultimate tensile strength(UTS)and electrical conductivity(EC)of the annealed state increased by 14%and 15%.After cold rolling with a 90%reduction,the UTS of the two new alloys reached 576 and 627MPa,respectively,the EC was 44.9%IACS and 42.0%IACS,and the product of UTS and EC(UTS×EC)was 97%and 99%higher than that of the annealed state alloy.The dislocations proliferated greatly in cold-rolled alloys,and the strengthening effects of dislocations reached 332 and 356 MPa,respectively,which is the main reason for the considerable improvement in mechanical properties. 展开更多
关键词 element substitution copper alloy solid solution strengthening microstructure and performance
下载PDF
Effect of two-step solid solution on microstructure andδphase precipitation of Inconel 718 alloy
2
作者 Enyu Liu Qingshuang Ma +5 位作者 Xintong Li Aoxue Gao Jing Bai Liming Yu Qiuzhi Gao Huijun Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第10期2199-2207,共9页
Inconel 718 is the most popular nickel-based superalloy and is extensively used in aerospace,automotive,and energy indus-tries owing to its extraordinary thermomechanical properties.The effects of different two-step s... Inconel 718 is the most popular nickel-based superalloy and is extensively used in aerospace,automotive,and energy indus-tries owing to its extraordinary thermomechanical properties.The effects of different two-step solid solution treatments on microstructure andδphase precipitation of Inconel 718 alloy were studied,and the transformation mechanism fromγ″metastable phase toδphase was clarified.The precipitates were statistically analyzed by X-ray diffractometry.The results show that theδphase content firstly increased,and then decreased with the temperature of the second-step solid solution.The changes in microstructure andδphase were studied by scanning electron microscopy and transmission electron microscopy.An intragranularδphase formed in Inconel 718 alloy at the second-[100]_(δ)[011]γ step solid solution temperature of 925℃,and its orientation relationship withγmatrix was determined as//and(010)_(δ)//(111)γ.Furthermore,the Vickers hardness of different heat treatment samples was measured,and the sample treated by second-step solid solution at 1010℃ reached the maximum hardness of HV 446.84. 展开更多
关键词 Inconel 718 alloy two-step solid solution treatment δphase γ″-δtransformation
下载PDF
Ti_(3)AlC_(2−y)N_(y) carbonitride MAX phase solid solutions with tunable mechanical,thermal,and electrical properties
3
作者 Weiwei Zhang Shibo Li +3 位作者 Shukai Fan Xuejin Zhang Xiachen Fan Guoping Bei 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2024年第9期1473-1481,共9页
Changing the N content in the Ti_(3)AlC_(2−y)N_(y) MAX phase solid solutions allows for the fine-tuning of their properties.However,systematic studies on the synthesis and properties of Ti_(3)AlC_(2−y)N_(y) solid solu... Changing the N content in the Ti_(3)AlC_(2−y)N_(y) MAX phase solid solutions allows for the fine-tuning of their properties.However,systematic studies on the synthesis and properties of Ti_(3)AlC_(2−y)N_(y) solid solution bulks have not been reported thus far.Here,previously reported Ti_(3)AlC_(2−y)N_(y) solid solution bulks(y=0.3,0.5,0.8,and 1.0)were synthesized via hot pressing of their powder counterparts under optimized conditions.The prepared Ti_(3)AlC_(2−y)N_(y) bulks are dense and have a fine microstructure with grain sizes of 6–8μm.The influence of the N content on the mechanical properties,electrical conductivities,and coefficients of thermal expansion(CTEs)of the prepared Ti_(3)AlC_(2−y)N_(y) bulk materials was clarified.The flexural strength and Vickers hardness values increased with increasing N content,suggesting that solid solution strengthening effectively improved the mechanical properties of Ti_(3)AlC_(2−y)N_(y).Ti_(3)AlCN(y=1)had the highest Vickers hardness and flexural strength among the studied samples,reaching 5.54 GPa and 550 MPa,respectively.However,the electrical conductivity and CTEs of the Ti_(3)AlC_(2−y)N_(y) solid solutions decreased with increasing N content,from 8.93×10^(−6) to 7.69×10^(−6) K^(−1) and from 1.33×10^(6) to 0.95×10^(6) S/m,respectively.This work demonstrated the tunable properties of Ti_(3)AlC_(2−y)N_(y) solid solutions with varying N contents and widened the MAX phase family for fundamental studies and applications. 展开更多
关键词 MAX solid solutions Ti_(3)alC_(2−y)N_(y) microstructure mechanical properties electrical conductivity thermal expansion
原文传递
Extending the solid solution range of sodium ferric pyrophosphate:Off‐stoichiometric Na_(3)Fe(2.5)(P_(2)O_(7))_(2)as a novel cathode for sodium‐ion batteries 被引量:1
4
作者 Xiang jun Pu Kunran Yang +6 位作者 Zibing Pan Chunhua Song Yangyang Lai Renjie Li Zheng‐Long Xu Zhongxue Chen Yuliang Cao 《Carbon Energy》 SCIE EI CAS CSCD 2024年第4期128-139,共12页
Iron‐based pyrophosphates are attractive cathodes for sodium‐ion batteries due to their large framework,cost‐effectiveness,and high energy density.However,the understanding of the crystal structure is scarce and on... Iron‐based pyrophosphates are attractive cathodes for sodium‐ion batteries due to their large framework,cost‐effectiveness,and high energy density.However,the understanding of the crystal structure is scarce and only a limited candidates have been reported so far.In this work,we found for the first time that a continuous solid solution,Na_(4−α)Fe_(2+α)_(2)(P_(2)O_(7))_(2)(0≤α≤1,could be obtained by mutual substitution of cations at center‐symmetric Na3 and Na4 sites while keeping the crystal building blocks of anionic P_(2)O_(7) unchanged.In particular,a novel off‐stoichiometric Na_(3)Fe(2.5)(P_(2)O_(7))_(2)is thus proposed,and its structure,energy storage mechanism,and electrochemical performance are extensively investigated to unveil the structure–function relationship.The as‐prepared off‐stoichiometric electrode delivers appealing performance with a reversible discharge capacity of 83 mAh g^(−1),a working voltage of 2.9 V(vs.Na^(+)/Na),the retention of 89.2%of the initial capacity after 500 cycles,and enhanced rate capability of 51 mAh g^(−1)at a current density of 1600 mA g^(−1).This research shows that sodium ferric pyrophosphate could form extended solid solution composition and promising phase is concealed in the range of Na_(4−α)Fe_(2+α)_(2)(P_(2)O_(7))_(2),offering more chances for exploration of new cathode materials for the construction of high‐performance SIBs. 展开更多
关键词 extending solidsolution range off‐stoichiometric Na_(3)Fe_(2.5)(P_(2)O_(7))_(2) sodium‐ion batteries structure-function relationship
下载PDF
Improvement effect of reversible solid solutions Mg_(2)Ni(Cu)/Mg_(2)Ni(Cu)H_(4)on hydrogen storage performance of MgH_(2)
5
作者 Yingyan Zhao Zhibing Liu +5 位作者 Jiangchuan Liu Yunfeng Zhu Jiguang Zhang Yana Liu Xiaohui Hu Liquan Li 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期197-208,共12页
The hydrogen absorption/desorption kinetic properties of MgH_(2)can be effectively enhanced by doping specific catalysts.In this work,MOFs-derived NiCu@C nanoparticles(~15 nm)with regular core-shell structure were suc... The hydrogen absorption/desorption kinetic properties of MgH_(2)can be effectively enhanced by doping specific catalysts.In this work,MOFs-derived NiCu@C nanoparticles(~15 nm)with regular core-shell structure were successfully prepared and introduced into MgH_(2)(denoted as MgH_(2)-NiCu@C).The onset and peak temperatures of hydrogen desorption of MgH_(2)-11 wt.%NiCu@C are 175.0℃and282.2℃,respectively.The apparent activation energy of dehydrogenated reaction is 77.2±4.5 kJ/mol for MgH_(2)-11 wt.%NiCu@C,which is lower than half of that of the as-milled MgH_(2).Moreover,MgH_(2)-11 wt.%NiCu@C displays great cyclic stability.The strengthening"hydrogen pumping"effect of reversible solid solutions Mg_(2)Ni(Cu)/Mg_(2)Ni(Cu)H_(4)is proposed to explain the remarkable improvement in hydrogen absorption/desorption kinetic properties of MgH_(2).This work offers a novel perspective for the design of bimetallic nanoparticles and beyond for application in hydrogen storage and other energy related fields. 展开更多
关键词 Magnesium hydride Reversible solid solution Core-shell nanoparticles Hydrogen storage performance
下载PDF
Efficient removal of Al(Ⅲ)and P507 from high concentration MgCl_(2)solution based on in-situ reaction strategy
6
作者 Qiang WANG Meng WANG +3 位作者 Zong-yu FENG Yong-qi ZHANG Xiao-wei HUANG Xiang-xin XUE 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第9期3042-3053,共12页
For a highly efficient recycling of a wastewater containing a high concentration of MgCl_(2),Al(Ⅲ)and P507 were scheduled to be removed in advance.In this study,the in-situ removal of Al(Ⅲ)and P507 from a high conce... For a highly efficient recycling of a wastewater containing a high concentration of MgCl_(2),Al(Ⅲ)and P507 were scheduled to be removed in advance.In this study,the in-situ removal of Al(Ⅲ)and P507 from a high concentration MgCl_(2)solution at different pH values and Al/P molar ratios was investigated.The results showed that P507 formed organic complexes of Al_(x)(OH)_y^(Z+)-P507 at pH of 2.0-4.0.At pH of 4.0-5.0,Al(Ⅲ)precipitated and transferred into Al(OH)_(3)with a flocculent amorphous morphology.Active sites on the Al(OH)_(3)surface enhanced the removal efficiency of P507.At pH of 6.0-6.5,Al(Ⅲ)and Mg(Ⅱ)formed layered crystalline Al(OH)_(3)and MgAl_(2)(OH)_(8with)small pore channels and fewer active sites,resulting in a reduced removal efficiency of P507.When the Al/P molar ratio exceeded 13 and the pH was between 4.0 and 5.0,the removal rates of both Al(Ⅲ)and P507 were higher than98%,while the concentration loss of Mg(Ⅱ)was only 0.2%-0.9%. 展开更多
关键词 in-situ removal al(III) P507 MgCl_(2)solution pH al/P molar ratio
下载PDF
Tungsten combustion in impact initiated W-Al composite based on W(Al) super-saturated solid solution 被引量:1
7
作者 Kong-xun Zhao Xiao-hong Zhang +5 位作者 Xiao-ran Gu Yu Tang Shun Li Yi-cong Ye Li'an Zhu Shu-xin Bai 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第7期112-120,共9页
Element W can effectively improve the density of energetic structural materials. However, W is an inert element and does not combust in air. To change the reaction characteristics of W, 60 at.% Al was introduced into ... Element W can effectively improve the density of energetic structural materials. However, W is an inert element and does not combust in air. To change the reaction characteristics of W, 60 at.% Al was introduced into W through mechanical alloying. XRD analysis shows that after 50 h of ball milling, the diffraction peak of Al completely disappears and W(Al60) super-saturated solid solution powder is obtained. Further observation by HAADF and HRTEM reveals that the W(Al60) super-saturated solid solution powder is a mixture of solid solution and amorphous phase. Based on the good thermal stability of W(Al60) alloy powder below 1000℃, W(Al60)-Al composite was synthesized by hot pressing process.Impact initiation experiments suggest that the W(Al60)-Al composite has excellent reaction characteristics, and multiple types of tungsten oxides are detected in the reaction products, showing that the modified W is combustible in air. Due to the combustion of tungsten, the energy release rate of the W(Al60)-Al composite at speed of 1362 m/s reaches 2.71 kJ/g. 展开更多
关键词 Tungsten combustion Reactive materials Super-saturated solid solution Shock-induced reactions Weal composite
下载PDF
Quantifying Solid Solution Strengthening in Nickel-Based Superalloys via High-Throughput Experiment and Machine Learning
8
作者 Zihang Li Zexin Wang +6 位作者 Zi Wang Zijun Qin Feng Liu Liming Tan Xiaochao Jin Xueling Fan Lan Huang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第5期1521-1538,共18页
Solid solution strengthening(SSS)is one of the main contributions to the desired tensile properties of nickel-based superalloys for turbine blades and disks.The value of SSS can be calculated by using Fleischer’s and... Solid solution strengthening(SSS)is one of the main contributions to the desired tensile properties of nickel-based superalloys for turbine blades and disks.The value of SSS can be calculated by using Fleischer’s and Labusch’s theories,while the model parameters are incorporated without fitting to experimental data of complex alloys.In thiswork,four diffusionmultiples consisting of multicomponent alloys and pure Niare prepared and characterized.The composition and microhardness of singleγphase regions in samples are used to quantify the SSS.Then,Fleischer’s and Labusch’s theories are examined based on high-throughput experiments,respectively.The fitted solid solution coefficients are obtained based on Labusch’s theory and experimental data,indicating higher accuracy.Furthermore,six machine learning algorithms are established,providing a more accurate prediction compared with traditional physical models and fitted physical models.The results show that the coupling of highthroughput experiments and machine learning has great potential in the field of performance prediction and alloy design. 展开更多
关键词 Multicomponent diffusion multiples solid solution strengthening strengthening models machine learning
下载PDF
Formation condition of solid solution type high-entropy alloy 被引量:22
9
作者 任明星 李邦盛 傅恒志 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第4期991-995,共5页
Formation condition of high-entropy alloys with solid solution structure was investigated. Seventeen kinds of the high-entropy alloys with different components were prepared, the influencing factors (the comprehensiv... Formation condition of high-entropy alloys with solid solution structure was investigated. Seventeen kinds of the high-entropy alloys with different components were prepared, the influencing factors (the comprehensive atomic radius difference δ, the mixing enthalpy AH and the mixing entropy AS) of phase composition of the alloys were calculated, and the microstructure and phase compositions of alloys were analyzed by using SEM and XRD. The result shows that only the systems with δ≤2.77 and △H≥-8.8 kJ/mol will form high entropy alloy with simple solid solution. Otherwise, intermetallic compounds will exist in the alloys. So, selection of the type of element has important effects on microstructure and properties of high entropy alloys. 展开更多
关键词 high entropy alloy solid solution comprehensive atomic radius difference mixing enthalpy formation condition
下载PDF
Microstructure evolution of Mg-9Gd-2Er-0.4Zr alloy during solid solution treatment 被引量:5
10
作者 王朝辉 杜文博 +2 位作者 王旭东 刘轲 李淑波 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第3期593-598,共6页
Microstructure evolution of the cast Mg-9Gd-2Er-0.4Zr alloy during solid solution treatment at temperature of 460-520 ℃ for 3-12 h was investigated by using optical microscope(OM),scanning electron microscope(SEM... Microstructure evolution of the cast Mg-9Gd-2Er-0.4Zr alloy during solid solution treatment at temperature of 460-520 ℃ for 3-12 h was investigated by using optical microscope(OM),scanning electron microscope(SEM) and transmission electron microscope(TEM).The results indicated that the grain size and the shape of second phase were obviously changed with time and/or temperature going on.At 460 ℃ for 3 h,the morphology of the Mg5(GdEr) phase was changed into fragmentized island morphology and the volume faction of the phase decreased.After solution solid treatment at 460 ℃ for 6 h,the Mg5(GdEr) phase was already completely dissolved,but some cuboid-shaped RE-rich phase precipitated.As the temperature increased,the morphology of the Mg5(GdEr) phase was transformed into the same morphology as that at 460 ℃ for 6 h.It was suggested that the microstructure evolution of the alloy during the solid solution treatment was concluded as follows:Mg5(GdEr) eutectic phase→Gd/Er atom diffusing into matrix→spheroidic Mg5(GdEr) phase→cuboid-shaped RE-rich phase→grain boundary immigration. 展开更多
关键词 Mg-Gd-Er-Zr alloy microstructure evolution solution solid treatment eutectic phase
下载PDF
Effect of as-solidified microstructure on subsequent solution-treatment process for A356 Al alloy 被引量:7
11
作者 党波 刘丛丛 +2 位作者 刘峰 刘颖卓 李远兵 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第3期634-642,共9页
For the compromise of mechanical properties and product cost, the end-chilled sand casting technique was applied to studying the microstructure evolution of A356 Al alloy with cooling rate and the effect of different ... For the compromise of mechanical properties and product cost, the end-chilled sand casting technique was applied to studying the microstructure evolution of A356 Al alloy with cooling rate and the effect of different as-cast microstructures on the subsequent solution-treatment process. The experimental results show that the secondary dendrite arm spacing (SDAS) of primaryα(Al), the size of eutectic Si and the volume fraction of Al?Si eutectic are reduced with increasing the cooling rate. Eutectic Si, subjected to solution treatment at 540 °C for 1 h followed by water quenching to room temperature, is completely spheroidized at cooling rate of 2.6 K/s; is partially spheroidized atcooling rate of 0.6 K/s; and is only edge-rounded at cooling rates of 0.22 and 0.12 K /s. Whilst the microhardness is also the maximum at cooling rate of 2.6 K/s. It consequently suggests that subjected to modification by high cooling rate, the eutectic Si is more readily modified, thus shortening the necessary solution time at given solution temperature, i.e., reducing the product cost. 展开更多
关键词 A356 al alloy solution heat treatment cooling rate eutectic silicon MODIFICATION
下载PDF
Improvement of ionic conductivity of solid polymer electrolyte based on Cu-Al bimetallic metal-organic framework fabricated through molecular grafting
12
作者 Liu-bin SONG Tian-yuan LONG +5 位作者 Min-zhi XIAO Min LIU Ting-ting ZHAO Yin-jie KUANG Lin JIANG Zhong-liang XIAO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第9期2943-2958,共16页
A composite solid electrolyte comprising a Cu-Al bimetallic metal-organic framework(CAB),lithium salt(LiTFSI)and polyethylene oxide(PEO)was fabricated through molecular grafting to enhance the ionic conductivity of th... A composite solid electrolyte comprising a Cu-Al bimetallic metal-organic framework(CAB),lithium salt(LiTFSI)and polyethylene oxide(PEO)was fabricated through molecular grafting to enhance the ionic conductivity of the PEO-based electrolytes.Experimental and molecular dynamics simulation results indicated that the electrolyte with 10 wt.%CAB(PL-CAB-10%)exhibits high ionic conductivity(8.42×10~(-4)S/cm at 60℃),high Li+transference number(0.46),wide electrochemical window(4.91 V),good thermal stability,and outstanding mechanical properties.Furthermore,PL-CAB-10%exhibits excellent cycle stability in both Li-Li symmetric battery and Li/PL-CAB-10%/LiFePO4 asymmetric battery setups.These enhanced performances are primarily attributable to the introduction of the versatile CAB.The abundant metal sites in CAB can react with TFSI~-and PEO through Lewis acid-base interactions,promoting LiTFSI dissociation and improving ionic conductivity.Additionally,regular pores in CAB provide uniformly distributed sites for cation plating during cycling. 展开更多
关键词 polyethylene oxide Cu−al bimetallic metal-organic framework solid lithium metal battery molecular grafting ionic conductivity
下载PDF
Microstructure and Properties of Cu-Cr-Zr Alloy after Rapidly Solidified Aging and Solid Solution Aging 被引量:14
13
作者 Ping LIU Juanhua SU +1 位作者 Qiming DONG Hejun LI 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2005年第4期475-478,共4页
The structure and properties of Cu-Cr-Zr alloy were studied after rapidly solidified aging and solid solution aging.At the early stage of aging (500℃ for 15 rain), the hardness and the conductivity of the alloy rap... The structure and properties of Cu-Cr-Zr alloy were studied after rapidly solidified aging and solid solution aging.At the early stage of aging (500℃ for 15 rain), the hardness and the conductivity of the alloy rapidly solidified are 143 HV and 72% IACS, respectively. Under the same aging condition, the hardness and electrical conductivity of the alloy solid solution treated can reach 86 HV and 47% IACS, respectively. The microstructure was analyzed, and the grain size after rapid solidification is much smaller than that after solid solution treatment. By rapidly solidified aging the fine precipitates distribute inside the grains and along the grain boundary, while by solid solution aging there are large Cr particles along the grain boundary. 展开更多
关键词 Cu-Cr-Zr alloy PROPERTIES solid solution aging Rapidly solidified aging
下载PDF
Highly efficient and selective photocatalytic dehydrogenation of benzyl alcohol for simultaneous hydrogen and benzaldehyde production over Ni-decorated Zn_(0.5)Cd_(0.5)S solid solution 被引量:7
14
作者 Lei Zhang Daochuan Jiang +3 位作者 Rana Muhammad Irfan Shan Tang Xin Chen Pingwu Du 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第3期71-77,共7页
Photocatalytic conversion of solar energy into hydrogen and high value-added fine chemicals has attracted increasing attention. Herein, we demonstrate an efficient photocatalytic system for simultaneous hydrogen evolu... Photocatalytic conversion of solar energy into hydrogen and high value-added fine chemicals has attracted increasing attention. Herein, we demonstrate an efficient photocatalytic system for simultaneous hydrogen evolution and benzaldehyde production by dehydrogenation of benzyl alcohol over Nidecorated Zn_(0.5)Cd_(0.5)S solid solution under visible light. The photocatalytic system shows an excellent hydrogen production rate of 666.3 μmol h^(-1) with high stability. The optimal apparent quantum yield of52.5% is obtained at 420 nm. This noble-metal-free photocatalytic system displays much higher activity than pure Zn_(0.5)Cd_(0.5)S and Pt-loaded Zn_(0.5)Cd_(0.5)S solid solution. Further studies reveal that the metallic Ni nanocrystals play an important role in accelerating the separation of photogenerated charge carriers and the subsequent cleavage of α-C–H bond during dehydrogenation of benzyl alcohol. 展开更多
关键词 Photocatalysis BENZYL alCOHOL oxidation HYDROGEN PRODUCTION Nickel solid solution Charge separation
下载PDF
Structure, synthesis, and catalytic properties of nanosize cerium-zirconium-based solid solutions in environmental catalysis 被引量:20
15
作者 Jixing Liu Zhen Zhao +1 位作者 Chunming Xu Jian Liu 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第10期1438-1487,共50页
Nanosize cerium-zirconium solid solution(CZO)with a special fluorite structure has received an increasing research interest due to their remarkable advantages such as excellent oxygen storage capacity and great flexib... Nanosize cerium-zirconium solid solution(CZO)with a special fluorite structure has received an increasing research interest due to their remarkable advantages such as excellent oxygen storage capacity and great flexibility in their composition and structure.By partial metal(including rare earth,transition,alkaline earth or other metal)doping into CZO,the physicochemical properties of these catalytic materials can be controllable adjusted for the study of specific reactions.To date,nanosize CZO has been prepared by co-precipitation,sol-gel,surfactant-assisted approach,solution combustion,micro-emulsion,high energy mechanical milling,etc.The advent of these methodologies has prompted researchers to construct well-defined networks with customized micromorphology and functionalities.In this review,we describe not only the basic structure and synthetic strategies of CZO,but also their relevant applications in environmental catalysis,such as the purification for CO,nitrogen oxides(NOx),volatile organic compounds(VOC),soot,hydrocarbon(HC),CO2 and solid particulate matters(PM),and some reaction mechanisms are also summarized. 展开更多
关键词 Cerium-zirconium solid solution SYNTHESIS Method STRUCTURE Environmental catalysis
下载PDF
Effect of doping elements on catalytic performance of CeO_2-ZrO_2 solid solutions 被引量:6
16
作者 李梅 柳召刚 +2 位作者 胡艳宏 王觅堂 励杭泉 《Journal of Rare Earths》 SCIE EI CAS CSCD 2008年第3期357-361,共5页
CeZr, CeYZr, LaCeZr, LaCePrZr, LaCePrYZr, and LaCePr solid solutions were prepared via the coprecipitation method, and characterized by means of X-Ray Diffraction (XRD) and Brunauer-Emmett-Teller (BET) techniques.... CeZr, CeYZr, LaCeZr, LaCePrZr, LaCePrYZr, and LaCePr solid solutions were prepared via the coprecipitation method, and characterized by means of X-Ray Diffraction (XRD) and Brunauer-Emmett-Teller (BET) techniques. The oxygen storage capacity (OSC) of the solid solutions was evaluated by the pulse technique and the catalytic activity was assessed using a 4-channel catalysis device. It was seen that the solid solutions presented cubic structure. The specific surface area and thermal stability could be enhanced by doping Y into the solid solutions. Doping a small amount of La had a positive effect on the thermal durability while doping a large amount of La decreased the specific surface area and the thermal stability. LaCePrZr and LaCePrYZr solid solutions synthesized using Baotou rare earth mineral residue enriched with LaCePr after Nd extraction presented a certain higher value in specific surface area and thermal stability, thereby enabling to be used as economic catalysts for automobile exhaust purification. Coating Al2O3 or SiO2 layer on the surface of ceria-zirconia solid solutions increased the specific surface area and thermal resistance. 展开更多
关键词 ceria-zirconia solid solutions oxygen storage materials rare earth doped catalysts
下载PDF
Researches on the Structure and Properties of Mullite Solid Solution Made from Industrial Waste 被引量:4
17
作者 RUAN Yu-Zhong YU Yan WU Ren-Ping 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 北大核心 2006年第8期965-970,共6页
The waste slag from aluminum profile factory and silicon fine powder from ferroalloy factory were utilized as the main raw materials to synthesize mullite solid solution Al4+2xSi2-xO10-x/2, whose defect formation mec... The waste slag from aluminum profile factory and silicon fine powder from ferroalloy factory were utilized as the main raw materials to synthesize mullite solid solution Al4+2xSi2-xO10-x/2, whose defect formation mechanism, crystalline phase composition, crystal cell parameters, microstructures and morphologies were characterized in detail by XRD and SEM. The results show that because of the ultrafine particle size of the materials, the content of mullite solid solution synthesized by this method is higher than that by regular method. Keywords: waste slag from aluminum factory, silicon fine powder, mullite, solid solution 展开更多
关键词 waste slag from aluminum factory silicon fine powder MULLITE solid solution
下载PDF
Effects of single and multi-stage solid solution treatments on microstructure and properties of as-extruded AA7055 helical profile 被引量:11
18
作者 Cun-sheng ZHANG Zhao-gang ZHANG +3 位作者 Ming-fu LIU En-cheng BAO Liang CHEN Guo-qun ZHAO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第7期1885-1901,共17页
The effects of single-stage solution treatment(SST),enhanced solution treatment(EST),high-temperature pre-precipitation(HTPP)and multi-stage solution treatment(MST)on the microstructure,mechanical properties and corro... The effects of single-stage solution treatment(SST),enhanced solution treatment(EST),high-temperature pre-precipitation(HTPP)and multi-stage solution treatment(MST)on the microstructure,mechanical properties and corrosion resistance of the as-extruded 7055 aluminium alloy(AA7055)helical profile were investigated using differential scanning calorimetry(DSC),optical microscopy(OM),scanning electron microscopy(SEM),electron back-scattered diffraction(EBSD)and transmission electron microscopy(TEM).It was observed that EST and MST could promote the dissolution of the second-phase particles compared with the traditional SST,and the intergranular phases were distinctly discontinuously distributed after HTPP and MST.There was obvious difference in the main texture type and texture strength for the alloy after different solid solution treatments.HTPP could improve the corrosion resistance of the alloy by regulating the intergranular phases,but the mechanical properties were severely weakened.While the good corrosion resistance of the alloy could be obtained by MST without obvious strength loss.As a result,the MST is an ideal solid solution treatment scheme for AA7055. 展开更多
关键词 7055 aluminum alloy extruded profile solid solution treatment mechanical properties corrosion resistance
下载PDF
Copper-ceria solid solution with improved catalytic activity for hydrogenation of CO to CHOH 被引量:7
19
作者 Bin Yang Wei Deng +1 位作者 Limin Guo Tatsumi Ishihara 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第9期1348-1359,共12页
A copper-ceria solid solution and ceria-supported copper catalysts were prepared and used for the catalytic hydrogenation of CO2 to CH3OH.According to site-specific classification and quantitative analyses(X-ray diffr... A copper-ceria solid solution and ceria-supported copper catalysts were prepared and used for the catalytic hydrogenation of CO2 to CH3OH.According to site-specific classification and quantitative analyses(X-ray diffraction,Raman spectroscopy,X-ray photoelectron spectroscopy,H2 temperature-programmed reduction,and CO adsorption),the interfaces of the prepared catalysts were classified as Cu incorporated into ceria(Cu-Ov-Cex),dispersed Cu O(D-Cu O-Ce O2),and bulk Cu O(B-Cu O-Ce O2)over the Ce O2 surface.These results,together with those of activity tests,showed that the Cu-Ov-Cex species was closely related to the CO2 hydrogenation activity and resulted in a much higher turnover frequency of CH3OH production than that observed with the D-Cu O-Ce O2 and B-Cu O-Ce O2 species.Thus,the copper-ceria solid solution exhibited improved activity due to the higher Cu-Ov-Cex fraction. 展开更多
关键词 Copper-ceria solid solution CO2 hydrogenation METHANOL Active site
下载PDF
Multi-solute solid solution behavior and its effect on the properties of magnesium alloys 被引量:6
20
作者 Jun Wang Yuan Yuan +5 位作者 Tao Chen Liang Wu Xianhuan Chen Bin Jiang Jingfeng Wang Fusheng Pan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第7期1786-1820,共35页
The low-density magnesium(Mg)alloys are attractive for the application in aerospace,transportation and other weight-saving-required fields.The mechanical properties and corrosion properties of Mg alloys are the key-pr... The low-density magnesium(Mg)alloys are attractive for the application in aerospace,transportation and other weight-saving-required fields.The mechanical properties and corrosion properties of Mg alloys are the key-property issues for the wide application.It is surprising to find that the solid solution of alloying elements in theα-Mg phase can have multi-effects on the properties of Mg alloys,e.g.,solid solution strengthening,solid solution corrosion-resistance-enhancing,etc.Additionally,the alloy design theory of"solid solution strengthening and ductilizing"proposed by Pan and co-workers has attracted extensive attentions.It is promising that by selected proper multi-alloying-elements(with optimal ratio)solid solutioned in theα-Mg phase,the comprehensive properties of Mg alloys can be synergistically improved.In this work,the solid solution behavior of Mg alloys and the followed solid solution property-enhancing effects were reviewed.The mechanisms proposed recently by researchers for these solid solution property-enhancing behaviors were presented,and the related calculations and predictions were also described.It is shown the demonstrations of the fundamentals for the solid solution property-enhancing of Mg alloys,especially from the atomic inter-reaction aspects,still require elaborated characterization work and calculation work.Additionally,it could be expected that the multi-solute in Mg alloys can bring many possibilities,or,in another saying,"cocktail effects".With understanding the multi-solute interaction behavior and the corresponded solid solution property-enhancing effects,the good balanced high-performance Mg alloys can be developed. 展开更多
关键词 Mg alloys solid solution STRENGTH DUCTILITY CORROSION-RESISTANCE
下载PDF
上一页 1 2 230 下一页 到第
使用帮助 返回顶部