The article deals the structure of the CaO -Al2O3 - TiO2 -SiO2 system as a basis for obtaining advanced ce- ramics with a complex of high-operational characteris- tics. As a result o['investigations the phase charctc...The article deals the structure of the CaO -Al2O3 - TiO2 -SiO2 system as a basis for obtaining advanced ce- ramics with a complex of high-operational characteris- tics. As a result o['investigations the phase charctcteristics are represented trod the graph of the relationship of the elementaory tetrahedra has been plotted. The most techno- logical system area ,for the production of heat resistant advanced ceramics has been determined. The batches for producing heat and chemical resistant dense advanced ceramics made of natural, technical and technogenic raw materials have been developed.展开更多
The formation strength plateau of ceramics is addressed. A set of of 99A1203 are conducted, mechanism of the residual subjected to thermal shock thermal shock experiments where the thin specimens of 1 mm× 10 mm&...The formation strength plateau of ceramics is addressed. A set of of 99A1203 are conducted, mechanism of the residual subjected to thermal shock thermal shock experiments where the thin specimens of 1 mm× 10 mm×50 mm exhibit parallel through edge cracks, and thus permit quantitative measurements of the crack patterns. The cracks evolve with the severity of ther- mal shock. It is found that there is a correlation between the length and density of the thermal shock cracks. The increase of crack length weakens the residual strength, whereas the increase of crack density improves it. In a considerably wide temperature range, the two contrary effects just counteract each other; consequently a plateau appears in the variation curve of the residual strength. A comparison between the numerical and experimental results of the residual strength is made, and they are found in good agreement. This work is helpful to a deep understanding of the thermal shock failure of ceramics.展开更多
Fatigue crack growth tests were carried out on the SEN B3 precracked specimens, with dimensions in accordance with ISO 12108 requirements. The specimens were made of martensitic stainless steel, X17CrNi15-2, and some ...Fatigue crack growth tests were carried out on the SEN B3 precracked specimens, with dimensions in accordance with ISO 12108 requirements. The specimens were made of martensitic stainless steel, X17CrNi15-2, and some of them were modified by the ceramic coating deposition surface treatment. The effects of ceramic coating, on the fatigue crack growth behaviour of hollow shaft specimens, were experimentally investigated. Fatigue crack growth rates, da/dN, were characterised, using the power law relationship between da/dN (in mm/cycle) and the stress intensity factor range, ΔK (in MPa∙m0.5). The two constants of the correlation are 7.9768 × 10−9 and 2.8107 for the parent material, and those for the coated material are 2.4391 × 10−9 and 3.1990, respectively. Microstructural analyses were carried out on the tested specimens, which shows that the maximum hardness of the ceramic coating is higher than that of substrate by a factor of ~3.2. The dimple fracture dominates the final fracture mechanism for the parent material, and the combination of fatigue, ductile fracture and cleavage dominates the final fracture mechanism for the coated material, based on the SEM analyses. EDS tests’ results reveal that the parent material specimen shows higher levels of C at matrix regions along with Fe- and O-rich regions, compared with the coated material specimen.展开更多
Pb0.97La0.02Zr0.95Ti0.05O3(PLZT)antiferroelectric thick films derived from different precursor solution concentrations are prepared on platinized silicon substrates by sol-gel processing.The films present polycrystall...Pb0.97La0.02Zr0.95Ti0.05O3(PLZT)antiferroelectric thick films derived from different precursor solution concentrations are prepared on platinized silicon substrates by sol-gel processing.The films present polycrystalline perovskite structure with a(100)preferred orientation by X-ray diffraction(XRD)analysis.The antiferroelectricity of the films is confirmed by the double hysteresis behaviors of polarization and double-bufferfly response of dielectric constant under the applied electrical field.Antiferroelectric properties and dielectric constant are improved while the polarization characteristic values are reduced with the increase of precursor solution concentration.The films at higher precursor solution concentration exhibit excellent dielectric properties.展开更多
The conventional Al2O3-13 wt. % TiO2 composite ceramic coatings are fabricated by plasma spraying on the surface of extrusion wheel. The microstrueture, morphology and phase compositions of the substrate and coat- ing...The conventional Al2O3-13 wt. % TiO2 composite ceramic coatings are fabricated by plasma spraying on the surface of extrusion wheel. The microstrueture, morphology and phase compositions of the substrate and coat- ing are investigated by using X-ray diffractometry (XRD) , scanning electron microsopy (SEM) and energy dis- persive spectroscopy (EDS). Moreover, the microhardness of the substrate and the coating are investigated using Vickers mierohardness tester, the friction and wear behaviors of the substrate and the coating are investigated by using a block-on-ring tribometer under dry sliding conditions with the load of 245 N. The results show that both γ-Al2O3 and α-Al2O3 phases are observed in the as-sprayed coatings, the mian phase is γ-Al2O3. There are white particulates Al2O3 on its surface. The Al2O3-13 wt. % TiO2 coating possesses higher mierohardness which is about 1018HV and 1.6 times that of the substrate. The wear performance of coating is better than that of the substrate. In a practical application, the life of the extrusion wheel which is plasma sprayed Al2O3-13 wt. % TiO2 coating on the surface is 1.2 times that of the conventional extrusion wheel, and the life is about 330 h.展开更多
文摘The article deals the structure of the CaO -Al2O3 - TiO2 -SiO2 system as a basis for obtaining advanced ce- ramics with a complex of high-operational characteris- tics. As a result o['investigations the phase charctcteristics are represented trod the graph of the relationship of the elementaory tetrahedra has been plotted. The most techno- logical system area ,for the production of heat resistant advanced ceramics has been determined. The batches for producing heat and chemical resistant dense advanced ceramics made of natural, technical and technogenic raw materials have been developed.
基金supported by the National Natural Science Foundations of China (10972020,11061130550)Fundamental Research Funds for the Central UniversitiesNational Agency for Research of France (International project T-shock)
文摘The formation strength plateau of ceramics is addressed. A set of of 99A1203 are conducted, mechanism of the residual subjected to thermal shock thermal shock experiments where the thin specimens of 1 mm× 10 mm×50 mm exhibit parallel through edge cracks, and thus permit quantitative measurements of the crack patterns. The cracks evolve with the severity of ther- mal shock. It is found that there is a correlation between the length and density of the thermal shock cracks. The increase of crack length weakens the residual strength, whereas the increase of crack density improves it. In a considerably wide temperature range, the two contrary effects just counteract each other; consequently a plateau appears in the variation curve of the residual strength. A comparison between the numerical and experimental results of the residual strength is made, and they are found in good agreement. This work is helpful to a deep understanding of the thermal shock failure of ceramics.
文摘Fatigue crack growth tests were carried out on the SEN B3 precracked specimens, with dimensions in accordance with ISO 12108 requirements. The specimens were made of martensitic stainless steel, X17CrNi15-2, and some of them were modified by the ceramic coating deposition surface treatment. The effects of ceramic coating, on the fatigue crack growth behaviour of hollow shaft specimens, were experimentally investigated. Fatigue crack growth rates, da/dN, were characterised, using the power law relationship between da/dN (in mm/cycle) and the stress intensity factor range, ΔK (in MPa∙m0.5). The two constants of the correlation are 7.9768 × 10−9 and 2.8107 for the parent material, and those for the coated material are 2.4391 × 10−9 and 3.1990, respectively. Microstructural analyses were carried out on the tested specimens, which shows that the maximum hardness of the ceramic coating is higher than that of substrate by a factor of ~3.2. The dimple fracture dominates the final fracture mechanism for the parent material, and the combination of fatigue, ductile fracture and cleavage dominates the final fracture mechanism for the coated material, based on the SEM analyses. EDS tests’ results reveal that the parent material specimen shows higher levels of C at matrix regions along with Fe- and O-rich regions, compared with the coated material specimen.
基金National Natural Science Foundation of China(No.60806039,No.51175483)China Postdoctoral Science Foundation Projects(No.20090461275,No.201003658)+1 种基金Shanxi Provincial Natural Science Foundation of China(No.20100210023-6)Shanxi Provincial Young Leaders on Science
文摘Pb0.97La0.02Zr0.95Ti0.05O3(PLZT)antiferroelectric thick films derived from different precursor solution concentrations are prepared on platinized silicon substrates by sol-gel processing.The films present polycrystalline perovskite structure with a(100)preferred orientation by X-ray diffraction(XRD)analysis.The antiferroelectricity of the films is confirmed by the double hysteresis behaviors of polarization and double-bufferfly response of dielectric constant under the applied electrical field.Antiferroelectric properties and dielectric constant are improved while the polarization characteristic values are reduced with the increase of precursor solution concentration.The films at higher precursor solution concentration exhibit excellent dielectric properties.
文摘The conventional Al2O3-13 wt. % TiO2 composite ceramic coatings are fabricated by plasma spraying on the surface of extrusion wheel. The microstrueture, morphology and phase compositions of the substrate and coat- ing are investigated by using X-ray diffractometry (XRD) , scanning electron microsopy (SEM) and energy dis- persive spectroscopy (EDS). Moreover, the microhardness of the substrate and the coating are investigated using Vickers mierohardness tester, the friction and wear behaviors of the substrate and the coating are investigated by using a block-on-ring tribometer under dry sliding conditions with the load of 245 N. The results show that both γ-Al2O3 and α-Al2O3 phases are observed in the as-sprayed coatings, the mian phase is γ-Al2O3. There are white particulates Al2O3 on its surface. The Al2O3-13 wt. % TiO2 coating possesses higher mierohardness which is about 1018HV and 1.6 times that of the substrate. The wear performance of coating is better than that of the substrate. In a practical application, the life of the extrusion wheel which is plasma sprayed Al2O3-13 wt. % TiO2 coating on the surface is 1.2 times that of the conventional extrusion wheel, and the life is about 330 h.