Alzheimer's disease is characterized by two major neuropathological hallmarks—the extracellularβ-amyloid plaques and intracellular neurofibrillary tangles consisting of aggregated and hyperphosphorylated Tau pro...Alzheimer's disease is characterized by two major neuropathological hallmarks—the extracellularβ-amyloid plaques and intracellular neurofibrillary tangles consisting of aggregated and hyperphosphorylated Tau protein.Recent studies suggest that dysregulation of the microtubuleassociated protein Tau,especially specific proteolysis,could be a driving force for Alzheimer's disease neurodegeneration.Tau physiologically promotes the assembly and stabilization of microtubules,whereas specific truncated fragments are sufficient to induce abnormal hyperphosphorylation and aggregate into toxic oligomers,resulting in them gaining prion-like characteristics.In addition,Tau truncations cause extensive impairments to neural and glial cell functions and animal cognition and behavior in a fragment-dependent manner.This review summarizes over 60 proteolytic cleavage sites and their corresponding truncated fragments,investigates the role of specific truncations in physiological and pathological states of Alzheimer's disease,and summarizes the latest applications of strategies targeting Tau fragments in the diagnosis and treatment of Alzheimer's disease.展开更多
In this paper,we consider the truncated multiplicity finite range set problem of meromorphic functions on some complex disc.By using the value distribution theory of meromorphic functions,we establish a second main th...In this paper,we consider the truncated multiplicity finite range set problem of meromorphic functions on some complex disc.By using the value distribution theory of meromorphic functions,we establish a second main theorem for meromorphic functions with finite growth index which share meromorphic functions(may not be small functions).As its application,we also extend the result of a finite range set with truncated multiplicity.展开更多
Due to the numerous variables to take into account as well as the inherent ambiguity and uncertainty,evaluating educational institutions can be difficult.The concept of a possibility Pythagorean fuzzy hypersoft set(pP...Due to the numerous variables to take into account as well as the inherent ambiguity and uncertainty,evaluating educational institutions can be difficult.The concept of a possibility Pythagorean fuzzy hypersoft set(pPyFHSS)is more flexible in this regard than other theoretical fuzzy set-like models,even though some attempts have been made in the literature to address such uncertainties.This study investigates the elementary notions of pPyFHSS including its set-theoretic operations union,intersection,complement,OR-and AND-operations.Some results related to these operations are also modified for pPyFHSS.Additionally,the similarity measures between pPyFHSSs are formulated with the assistance of numerical examples and results.Lastly,an intelligent decision-assisted mechanism is developed with the proposal of a robust algorithm based on similarity measures for solving multi-attribute decision-making(MADM)problems.A case study that helps the decision-makers assess the best educational institution is discussed to validate the suggested system.The algorithmic results are compared with the most pertinent model to evaluate the adaptability of pPyFHSS,as it generalizes the classical possibility fuzzy set-like theoretical models.Similarly,while considering significant evaluating factors,the flexibility of pPyFHSS is observed through structural comparison.展开更多
The dramatic rise in the number of people living in cities has made many environmental and social problems worse.The search for a productive method for disposing of solid waste is the most notable of these problems.Ma...The dramatic rise in the number of people living in cities has made many environmental and social problems worse.The search for a productive method for disposing of solid waste is the most notable of these problems.Many scholars have referred to it as a fuzzy multi-attribute or multi-criteria decision-making problem using various fuzzy set-like approaches because of the inclusion of criteria and anticipated ambiguity.The goal of the current study is to use an innovative methodology to address the expected uncertainties in the problem of solid waste site selection.The characteristics(or sub-attributes)that decision-makers select and the degree of approximation they accept for various options can both be indicators of these uncertainties.To tackle these problems,a novel mathematical structure known as the fuzzy parameterized possibility single valued neutrosophic hypersoft expert set(ρˆ-set),which is initially described,is integrated with a modified version of Sanchez’s method.Following this,an intelligent algorithm is suggested.The steps of the suggested algorithm are explained with an example that explains itself.The compatibility of solid waste management sites and systems is discussed,and rankings are established along with detailed justifications for their viability.This study’s strengths lie in its application of fuzzy parameterization and possibility grading to effectively handle the uncertainties embodied in the parameters’nature and alternative approximations,respectively.It uses specific mathematical formulations to compute the fuzzy parameterized degrees and possibility grades that are missing from the prior literature.It is simpler for the decisionmakers to look at each option separately because the decision is uncertain.Comparing the computed results,it is discovered that they are consistent and dependable because of their preferred properties.展开更多
In this paper we propose an absolute error loss EB estimator for parameter of one-side truncation distribution families. Under some conditions we have proved that the convergence rates of its Bayes risk is o, where 0&...In this paper we propose an absolute error loss EB estimator for parameter of one-side truncation distribution families. Under some conditions we have proved that the convergence rates of its Bayes risk is o, where 0<λ,r≤1,Mn≤lnln n (for large n),Mn→∞ as n→∞.展开更多
In this paper, an inner turret moored FPSO which works in the water of 320 m depth, is selected to study the socalled "passively-truncated + numerical-simulation" type of hybrid model testing technique while the tn...In this paper, an inner turret moored FPSO which works in the water of 320 m depth, is selected to study the socalled "passively-truncated + numerical-simulation" type of hybrid model testing technique while the tnmcated water depth is 160 m and the model scale ), = 80. During the investigation, the optimization design of the equivalent-depth truncated system is performed by using the similarity of the static characteristics between the truncated system and the full depth one as the objective function. According to the truncated system, the corresponding physical test model is made. By adopting the coupling time domain simulation method, the tnmcated system model test is numerically reconstructed to carefully verify the computer simulation software and to adjust the corresponding hydrodynamic parameters. Based on the above work, the numerical extrapolation to the full depth system is performed by using the verified computer software and the adjusted hydrodyrmmic parameters. The full depth system model test is then performed in the basin and the results are compared with those from the numerical extrapolation. At last, the implementation procedure and the key technique of the hybrid model testing of the deep-sea platforms are summarized and printed. Through the above investigations, some beneficial conclusions are presented.展开更多
Recent studies on assessment of a very low annual probability of exceeding (APE) ground motions, 10-4 or less, have highlighted the importance of the upper bound of ground motions when very low probability results a...Recent studies on assessment of a very low annual probability of exceeding (APE) ground motions, 10-4 or less, have highlighted the importance of the upper bound of ground motions when very low probability results are acquired. The truncation level adopted in probabilistic seismic hazard analysis (PSHA) should be determined by an aleatory uncertainty model (i.e., distribution model) of ground motions and the possible maximum and minimum ground motion values of a specific earthquake. However, at the present time, it is impossible to establish the upper bound model for ground motions based on the source characteristics and/or ground motion propagation. McGuire suggested a truncation level be fixed at a number of = 6, or the distribution of residuals be truncated in such a manner that site intensity cannot be greater than the epicenter intensity. This study aims to find a reasonable and feasible truncation level to be used in PSHA when the physical mechanism is not available to find the extreme ground motion. A mathematical analysis of the influence of the truncation level on PSHA, case studies of sites in different seismotectonic settings, and a distribution analysis of ground motion residuals are conducted in this study. It is concluded that = 4 is the minimum acceptable value for engineering applications for APEs within 0.002 to 10-4, and for low APEs, such as 10-5 and 10-6, the value of should be no less than 5 in most regions of China.展开更多
Let B^pΩ, 1 ≤ p 〈 ∞, be the space of all bounded functions from Lp(R) which can be extended to entire functions of exponential type Ω. The uniform error bounds for truncated Whittaker-Kotelnikov-Shannon series ...Let B^pΩ, 1 ≤ p 〈 ∞, be the space of all bounded functions from Lp(R) which can be extended to entire functions of exponential type Ω. The uniform error bounds for truncated Whittaker-Kotelnikov-Shannon series based on local sampling are derived for functions f ∈ B^pΩ without decay assumption at infinity. Then the optimal bounds of the aliasing error and truncation error of Whittaker-Kotelnikov-Shannon expansion for non-bandlimited functions from Sobolev classes L/(Wp(R)) are determined up to a logarithmic factor.展开更多
Let Q be the Q-matrix of an irreducible, positive recurrent Markov process on a countable state space. We show that, under a number of conditions, the stationary distributions of the n × n north-west corner augme...Let Q be the Q-matrix of an irreducible, positive recurrent Markov process on a countable state space. We show that, under a number of conditions, the stationary distributions of the n × n north-west corner augmentations of Q converge in total variation to the stationary distribution of the process. Two conditions guaranteeing such convergence include exponential ergodicity and stochastic monotonicity of the process. The same also holds for processes dominated by a stochastically monotone Markov process. In addition, we shall show that finite perturbations of stochastically monotone processes may be viewed as being dominated by a stochastically monotone process, thus extending the scope of these results to a larger class of processes. Consequently, the augmentation method provides an attractive, intuitive method for approximating the stationary distributions of a large class of Markov processes on countably infinite state spaces from a finite amount of known information.展开更多
To solve the dimensional limitations of physical models in tests, an equivalent water depth truncated design for a classical SPAR working in 913 m water was investigated. The water depth was reduced to 736m and then t...To solve the dimensional limitations of physical models in tests, an equivalent water depth truncated design for a classical SPAR working in 913 m water was investigated. The water depth was reduced to 736m and then to 552m. As this was done, the mooting line lengths, EA value, and mass per meter were adjusted. Truncation rules and formulas for parameters and truncation factors were proposed. SPAR static characteristics were made to be consistent with those at full water depth. Then further time-domain coupled analysis was carried out for the SPAR when the mooting system experienced waves. The mooring lines were simulated by quasi-static method. Global responses and mooring line forces were found to agree well with test results for a prototype at that water depth. The truncation method proved to be robust and reliable.展开更多
Highly accurate spatial discretization is essentially required to perform numerical climate and weather prediction. The difference between the differential and the finite-difference operator is however a primitive err...Highly accurate spatial discretization is essentially required to perform numerical climate and weather prediction. The difference between the differential and the finite-difference operator is however a primitive error source in the numerics. This paper presents an optimization of centered finite-difference operator based on the principle of constrained cost function, which can reduce the truncation error to minimum. In the optimization point of view, such optimal operator is in fact an attempt to minimize spatial truncation er-rors in atmospheric modeling, in a simple way and indeed a quite innovative way to implement Variational Continuous Assimilation (VCA) technique. Furthermore, the optimizing difference operator is consciously designed to be meshing-independent, so that it can be used for most Arakawa-mesh configurations, such as un-staggered (Arakawa-A) or com-monly staggered (Arakawa-B, Arakawa-C, Arakawa-D) mesh. But for the calibration purpose, the pro-posed operator is implemented on an un-staggered mesh in which the truncation oscillation is mostly ex-cited, and it thus makes a severe and indeed a benchmark test for the proposed optimal scheme. Both theo-retical investigation and practical modeling indicate that the aforementioned numerical noise can be significantly eliminated.展开更多
The structural damage identification through modal data often leads to solving a set of linear equations. Special numerical treatment is sometimes required for an accurate and stable solution owing to the ill conditio...The structural damage identification through modal data often leads to solving a set of linear equations. Special numerical treatment is sometimes required for an accurate and stable solution owing to the ill conditioning of the equations. Based on the singular value decomposition (SVD) of the coefficient matrix, an error based truncation algorithm is proposed in this paper. By rejection of selected small singular values, the influence of noise can be reduced. A simply-supported beam is used as a simulation example to compare the results to other methods. Illustrative numerical examples demonstrate the good efficiency and stability of the algorithm in the nondestructive identification of structural damage through modal data.展开更多
This paper considers the problem of applying data mining techniques to aeronautical field.The truncation method,which is one of the techniques in the aeronautical data mining,can be used to efficiently handle the air-...This paper considers the problem of applying data mining techniques to aeronautical field.The truncation method,which is one of the techniques in the aeronautical data mining,can be used to efficiently handle the air-combat behavior data.The technique of air-combat behavior data mining based on the truncation method is proposed to discover the air-combat rules or patterns.The simulation platform of the air-combat behavior data mining that supports two fighters is implemented.The simulation experimental results show that the proposed air-combat behavior data mining technique based on the truncation method is feasible whether in efficiency or in effectiveness.展开更多
Two types of existing iterative methods for solving the nonlinear balance equation(NBE)are revisited.In the first type,the NBE is rearranged into a linearized equation for a presumably small correction to the initial ...Two types of existing iterative methods for solving the nonlinear balance equation(NBE)are revisited.In the first type,the NBE is rearranged into a linearized equation for a presumably small correction to the initial guess or the subsequent updated solution.In the second type,the NBE is rearranged into a quadratic form of the absolute vorticity with the positive root of this quadratic form used in the form of a Poisson equation to solve NBE iteratively.The two methods are rederived by expanding the solution asymptotically upon a small Rossby number,and a criterion for optimally truncating the asymptotic expansion is proposed to obtain the super-asymptotic approximation of the solution.For each rederived method,two iterative procedures are designed using the integral-form Poisson solver versus the over-relaxation scheme to solve the boundary value problem in each iteration.Upon testing with analytically formulated wavering jet flows on the synoptic,sub-synoptic and meso-αscales,the iterative procedure designed for the first method with the Poisson solver,named M1a,is found to be the most accurate and efficient.For the synoptic wavering jet flow in which the NBE is entirely elliptic,M1a is extremely accurate.For the sub-synoptic wavering jet flow in which the NBE is mostly elliptic,M1a is sufficiently accurate.For the meso-αwavering jet flow in which the NBE is partially hyperbolic so its boundary value problem becomes seriously ill-posed,M1a can effectively reduce the solution error for the cyclonically curved part of the wavering jet flow,but not for the anti-cyclonically curved part.展开更多
The truncation error associated with a given sampling representation is defined as the difference between the signal and on approximating sumutilizing a finite number of terms. In this paper we give uniform bound for ...The truncation error associated with a given sampling representation is defined as the difference between the signal and on approximating sumutilizing a finite number of terms. In this paper we give uniform bound for truncation error of bandlimited functions in the n dimensional Lebesgue space Lp(Rn) associated with multidimensional Shannon sampling representation.展开更多
In anti-seismic calculation, the mode truncation is a significant problem to engineers if the mode-superposition response spectrum method is used, which has not been completely solved yet in some large and complex str...In anti-seismic calculation, the mode truncation is a significant problem to engineers if the mode-superposition response spectrum method is used, which has not been completely solved yet in some large and complex structures such as reticulated domes. In this case, some useful advices, concentrating on the problem above, are expected through a careful and comprehensive investigation of this paper. During the investigation, the authors first point out shortcomings of former researches. Then frequency-spectrum characteristics of single-layered reticulated domes were studied from the perspective of structural responses. During this process, some important results such as the existence of the main resonant section, and the fact that the relative sensitivity of these domes under horizontal and vertical impulse varies with the different R/S ratios were achieved. Furthermore, based on the study of frequency-spectrum characteristics, as well as that of earthquake input, reasonable numbers of mode truncation in single layered reticulated domes with different R/S ratio were presented. Results of case studies prove the mode truncation number proposed is valid.展开更多
Based on the analysis of the spurious introduced by phase accumulation truncation which was made by Nicholas, a new simplified algorithm for spurious spectrum in the presence of phase truncation is presented by using ...Based on the analysis of the spurious introduced by phase accumulation truncation which was made by Nicholas, a new simplified algorithm for spurious spectrum in the presence of phase truncation is presented by using the mapping mathematics and number theoretic method, it is possible to precisely analyze the spurious location and the spurious amplitude introduced by phase truncation in practical applications by computer.展开更多
In this paper, based on random left truncated and right censored data, the authors derive strong representations of the cumulative hazard function estimator and the product-limit estimator of the survival function. wh...In this paper, based on random left truncated and right censored data, the authors derive strong representations of the cumulative hazard function estimator and the product-limit estimator of the survival function. which are valid up to a given order statistic of the observations. A precise bound for the errors is obtained which only depends on the index of the last order statistic to be included.展开更多
基金supported by the Neural Regeneration Co-innovation Center of Jiangsu Province,Nantong University(to DC)the National Natural Science Foundation of China,Nos.81872853(to DC),81870941(to JHG)the Science and Technology Project of Nantong City,Nos.JC22022022(to FW)and JC2021059(to JM)。
文摘Alzheimer's disease is characterized by two major neuropathological hallmarks—the extracellularβ-amyloid plaques and intracellular neurofibrillary tangles consisting of aggregated and hyperphosphorylated Tau protein.Recent studies suggest that dysregulation of the microtubuleassociated protein Tau,especially specific proteolysis,could be a driving force for Alzheimer's disease neurodegeneration.Tau physiologically promotes the assembly and stabilization of microtubules,whereas specific truncated fragments are sufficient to induce abnormal hyperphosphorylation and aggregate into toxic oligomers,resulting in them gaining prion-like characteristics.In addition,Tau truncations cause extensive impairments to neural and glial cell functions and animal cognition and behavior in a fragment-dependent manner.This review summarizes over 60 proteolytic cleavage sites and their corresponding truncated fragments,investigates the role of specific truncations in physiological and pathological states of Alzheimer's disease,and summarizes the latest applications of strategies targeting Tau fragments in the diagnosis and treatment of Alzheimer's disease.
基金Supported by National Natural Science Foundation of China(12061041)Jiangxi Provincial Natural Science Foundation(20232BAB201003).
文摘In this paper,we consider the truncated multiplicity finite range set problem of meromorphic functions on some complex disc.By using the value distribution theory of meromorphic functions,we establish a second main theorem for meromorphic functions with finite growth index which share meromorphic functions(may not be small functions).As its application,we also extend the result of a finite range set with truncated multiplicity.
基金supported by the Deanship of Graduate Studies and Scientific Research at Qassim University(QU-APC-2024-9/1).
文摘Due to the numerous variables to take into account as well as the inherent ambiguity and uncertainty,evaluating educational institutions can be difficult.The concept of a possibility Pythagorean fuzzy hypersoft set(pPyFHSS)is more flexible in this regard than other theoretical fuzzy set-like models,even though some attempts have been made in the literature to address such uncertainties.This study investigates the elementary notions of pPyFHSS including its set-theoretic operations union,intersection,complement,OR-and AND-operations.Some results related to these operations are also modified for pPyFHSS.Additionally,the similarity measures between pPyFHSSs are formulated with the assistance of numerical examples and results.Lastly,an intelligent decision-assisted mechanism is developed with the proposal of a robust algorithm based on similarity measures for solving multi-attribute decision-making(MADM)problems.A case study that helps the decision-makers assess the best educational institution is discussed to validate the suggested system.The algorithmic results are compared with the most pertinent model to evaluate the adaptability of pPyFHSS,as it generalizes the classical possibility fuzzy set-like theoretical models.Similarly,while considering significant evaluating factors,the flexibility of pPyFHSS is observed through structural comparison.
文摘The dramatic rise in the number of people living in cities has made many environmental and social problems worse.The search for a productive method for disposing of solid waste is the most notable of these problems.Many scholars have referred to it as a fuzzy multi-attribute or multi-criteria decision-making problem using various fuzzy set-like approaches because of the inclusion of criteria and anticipated ambiguity.The goal of the current study is to use an innovative methodology to address the expected uncertainties in the problem of solid waste site selection.The characteristics(or sub-attributes)that decision-makers select and the degree of approximation they accept for various options can both be indicators of these uncertainties.To tackle these problems,a novel mathematical structure known as the fuzzy parameterized possibility single valued neutrosophic hypersoft expert set(ρˆ-set),which is initially described,is integrated with a modified version of Sanchez’s method.Following this,an intelligent algorithm is suggested.The steps of the suggested algorithm are explained with an example that explains itself.The compatibility of solid waste management sites and systems is discussed,and rankings are established along with detailed justifications for their viability.This study’s strengths lie in its application of fuzzy parameterization and possibility grading to effectively handle the uncertainties embodied in the parameters’nature and alternative approximations,respectively.It uses specific mathematical formulations to compute the fuzzy parameterized degrees and possibility grades that are missing from the prior literature.It is simpler for the decisionmakers to look at each option separately because the decision is uncertain.Comparing the computed results,it is discovered that they are consistent and dependable because of their preferred properties.
文摘In this paper we propose an absolute error loss EB estimator for parameter of one-side truncation distribution families. Under some conditions we have proved that the convergence rates of its Bayes risk is o, where 0<λ,r≤1,Mn≤lnln n (for large n),Mn→∞ as n→∞.
基金This work was financially supported by the National Natural Science Foundation of China (Grant No10602055)Nature Science Foundation of China Jiliang University (Grant No XZ0501)
文摘In this paper, an inner turret moored FPSO which works in the water of 320 m depth, is selected to study the socalled "passively-truncated + numerical-simulation" type of hybrid model testing technique while the tnmcated water depth is 160 m and the model scale ), = 80. During the investigation, the optimization design of the equivalent-depth truncated system is performed by using the similarity of the static characteristics between the truncated system and the full depth one as the objective function. According to the truncated system, the corresponding physical test model is made. By adopting the coupling time domain simulation method, the tnmcated system model test is numerically reconstructed to carefully verify the computer simulation software and to adjust the corresponding hydrodynamic parameters. Based on the above work, the numerical extrapolation to the full depth system is performed by using the verified computer software and the adjusted hydrodyrmmic parameters. The full depth system model test is then performed in the basin and the results are compared with those from the numerical extrapolation. At last, the implementation procedure and the key technique of the hybrid model testing of the deep-sea platforms are summarized and printed. Through the above investigations, some beneficial conclusions are presented.
基金Program of Seismic Ground Motion Parameter Zonation Map of Chinathe Basic Research Fund of the Institute of Geophysics Under Grant No.DQJB11C18the Special Funds for Science and Technology Research Under Grant No.200708003
文摘Recent studies on assessment of a very low annual probability of exceeding (APE) ground motions, 10-4 or less, have highlighted the importance of the upper bound of ground motions when very low probability results are acquired. The truncation level adopted in probabilistic seismic hazard analysis (PSHA) should be determined by an aleatory uncertainty model (i.e., distribution model) of ground motions and the possible maximum and minimum ground motion values of a specific earthquake. However, at the present time, it is impossible to establish the upper bound model for ground motions based on the source characteristics and/or ground motion propagation. McGuire suggested a truncation level be fixed at a number of = 6, or the distribution of residuals be truncated in such a manner that site intensity cannot be greater than the epicenter intensity. This study aims to find a reasonable and feasible truncation level to be used in PSHA when the physical mechanism is not available to find the extreme ground motion. A mathematical analysis of the influence of the truncation level on PSHA, case studies of sites in different seismotectonic settings, and a distribution analysis of ground motion residuals are conducted in this study. It is concluded that = 4 is the minimum acceptable value for engineering applications for APEs within 0.002 to 10-4, and for low APEs, such as 10-5 and 10-6, the value of should be no less than 5 in most regions of China.
基金Supported by the National Natural Science Foundation of China (10971251, 11101220 and 11271199)the Program for new century excellent talents in University of China (NCET-10-0513)
文摘Let B^pΩ, 1 ≤ p 〈 ∞, be the space of all bounded functions from Lp(R) which can be extended to entire functions of exponential type Ω. The uniform error bounds for truncated Whittaker-Kotelnikov-Shannon series based on local sampling are derived for functions f ∈ B^pΩ without decay assumption at infinity. Then the optimal bounds of the aliasing error and truncation error of Whittaker-Kotelnikov-Shannon expansion for non-bandlimited functions from Sobolev classes L/(Wp(R)) are determined up to a logarithmic factor.
文摘Let Q be the Q-matrix of an irreducible, positive recurrent Markov process on a countable state space. We show that, under a number of conditions, the stationary distributions of the n × n north-west corner augmentations of Q converge in total variation to the stationary distribution of the process. Two conditions guaranteeing such convergence include exponential ergodicity and stochastic monotonicity of the process. The same also holds for processes dominated by a stochastically monotone Markov process. In addition, we shall show that finite perturbations of stochastically monotone processes may be viewed as being dominated by a stochastically monotone process, thus extending the scope of these results to a larger class of processes. Consequently, the augmentation method provides an attractive, intuitive method for approximating the stationary distributions of a large class of Markov processes on countably infinite state spaces from a finite amount of known information.
基金Supported by China National 111 Project Under Grant No.B07019
文摘To solve the dimensional limitations of physical models in tests, an equivalent water depth truncated design for a classical SPAR working in 913 m water was investigated. The water depth was reduced to 736m and then to 552m. As this was done, the mooting line lengths, EA value, and mass per meter were adjusted. Truncation rules and formulas for parameters and truncation factors were proposed. SPAR static characteristics were made to be consistent with those at full water depth. Then further time-domain coupled analysis was carried out for the SPAR when the mooting system experienced waves. The mooring lines were simulated by quasi-static method. Global responses and mooring line forces were found to agree well with test results for a prototype at that water depth. The truncation method proved to be robust and reliable.
基金We acknowledge the anonymous reviewers for their helpful comments and criticism on an earlier manuscript.The authors are indebted to the supports from the National Natural Science Foundation of China under Grant Nos.40175025and 40028504the State key Bas
文摘Highly accurate spatial discretization is essentially required to perform numerical climate and weather prediction. The difference between the differential and the finite-difference operator is however a primitive error source in the numerics. This paper presents an optimization of centered finite-difference operator based on the principle of constrained cost function, which can reduce the truncation error to minimum. In the optimization point of view, such optimal operator is in fact an attempt to minimize spatial truncation er-rors in atmospheric modeling, in a simple way and indeed a quite innovative way to implement Variational Continuous Assimilation (VCA) technique. Furthermore, the optimizing difference operator is consciously designed to be meshing-independent, so that it can be used for most Arakawa-mesh configurations, such as un-staggered (Arakawa-A) or com-monly staggered (Arakawa-B, Arakawa-C, Arakawa-D) mesh. But for the calibration purpose, the pro-posed operator is implemented on an un-staggered mesh in which the truncation oscillation is mostly ex-cited, and it thus makes a severe and indeed a benchmark test for the proposed optimal scheme. Both theo-retical investigation and practical modeling indicate that the aforementioned numerical noise can be significantly eliminated.
文摘The structural damage identification through modal data often leads to solving a set of linear equations. Special numerical treatment is sometimes required for an accurate and stable solution owing to the ill conditioning of the equations. Based on the singular value decomposition (SVD) of the coefficient matrix, an error based truncation algorithm is proposed in this paper. By rejection of selected small singular values, the influence of noise can be reduced. A simply-supported beam is used as a simulation example to compare the results to other methods. Illustrative numerical examples demonstrate the good efficiency and stability of the algorithm in the nondestructive identification of structural damage through modal data.
文摘This paper considers the problem of applying data mining techniques to aeronautical field.The truncation method,which is one of the techniques in the aeronautical data mining,can be used to efficiently handle the air-combat behavior data.The technique of air-combat behavior data mining based on the truncation method is proposed to discover the air-combat rules or patterns.The simulation platform of the air-combat behavior data mining that supports two fighters is implemented.The simulation experimental results show that the proposed air-combat behavior data mining technique based on the truncation method is feasible whether in efficiency or in effectiveness.
基金the NSF of China Grants 91937301 and 41675060,the National Key Scientific and Technological Infrastructure Project"EarthLab",and the ONR Grants N000141712375 and N000142012449 to the University of Oklahoma(OU)The numerical experiments were performed at the OU supercomputer SchoonerCIMMS by NOAA/Office of Oceanic and Atmospheric Research under NOAA-OU Cooperative Agreement#NA110AR4320072,U.S.Department of Commerce.
文摘Two types of existing iterative methods for solving the nonlinear balance equation(NBE)are revisited.In the first type,the NBE is rearranged into a linearized equation for a presumably small correction to the initial guess or the subsequent updated solution.In the second type,the NBE is rearranged into a quadratic form of the absolute vorticity with the positive root of this quadratic form used in the form of a Poisson equation to solve NBE iteratively.The two methods are rederived by expanding the solution asymptotically upon a small Rossby number,and a criterion for optimally truncating the asymptotic expansion is proposed to obtain the super-asymptotic approximation of the solution.For each rederived method,two iterative procedures are designed using the integral-form Poisson solver versus the over-relaxation scheme to solve the boundary value problem in each iteration.Upon testing with analytically formulated wavering jet flows on the synoptic,sub-synoptic and meso-αscales,the iterative procedure designed for the first method with the Poisson solver,named M1a,is found to be the most accurate and efficient.For the synoptic wavering jet flow in which the NBE is entirely elliptic,M1a is extremely accurate.For the sub-synoptic wavering jet flow in which the NBE is mostly elliptic,M1a is sufficiently accurate.For the meso-αwavering jet flow in which the NBE is partially hyperbolic so its boundary value problem becomes seriously ill-posed,M1a can effectively reduce the solution error for the cyclonically curved part of the wavering jet flow,but not for the anti-cyclonically curved part.
基金Projcct supported by the Natural Science Foundation of China (Grant No. 10371009 ) of Beijing Educational Committee (No. 2002KJ112).
文摘The truncation error associated with a given sampling representation is defined as the difference between the signal and on approximating sumutilizing a finite number of terms. In this paper we give uniform bound for truncation error of bandlimited functions in the n dimensional Lebesgue space Lp(Rn) associated with multidimensional Shannon sampling representation.
基金Sponsored by the National Natural Science Foundation of China(Grant No.50338010).
文摘In anti-seismic calculation, the mode truncation is a significant problem to engineers if the mode-superposition response spectrum method is used, which has not been completely solved yet in some large and complex structures such as reticulated domes. In this case, some useful advices, concentrating on the problem above, are expected through a careful and comprehensive investigation of this paper. During the investigation, the authors first point out shortcomings of former researches. Then frequency-spectrum characteristics of single-layered reticulated domes were studied from the perspective of structural responses. During this process, some important results such as the existence of the main resonant section, and the fact that the relative sensitivity of these domes under horizontal and vertical impulse varies with the different R/S ratios were achieved. Furthermore, based on the study of frequency-spectrum characteristics, as well as that of earthquake input, reasonable numbers of mode truncation in single layered reticulated domes with different R/S ratio were presented. Results of case studies prove the mode truncation number proposed is valid.
文摘Based on the analysis of the spurious introduced by phase accumulation truncation which was made by Nicholas, a new simplified algorithm for spurious spectrum in the presence of phase truncation is presented by using the mapping mathematics and number theoretic method, it is possible to precisely analyze the spurious location and the spurious amplitude introduced by phase truncation in practical applications by computer.
文摘In this paper, based on random left truncated and right censored data, the authors derive strong representations of the cumulative hazard function estimator and the product-limit estimator of the survival function. which are valid up to a given order statistic of the observations. A precise bound for the errors is obtained which only depends on the index of the last order statistic to be included.