Welded mild steel is used in different applications in engineering. To strengthen the joint, the weld can be reinforced by adding titanium alloy powder to the joint. This results in the formation of incomplete martens...Welded mild steel is used in different applications in engineering. To strengthen the joint, the weld can be reinforced by adding titanium alloy powder to the joint. This results in the formation of incomplete martensite in a welded joint. The incomplete martensite affects mechanical properties. Therefore, this study aims to predict the volume fraction of martensite in reinforced butt welded joints to understand complex phenomena during microstructure formation. To do so, a combination of the finite element method to predict temperature history, and the Koistinen and Marburger equation, were used to predict the volume fraction of martensite. The martensite start temperature was calculated using chemical elements obtained from the dilution-based mixture rule. The curve shape of martensite evolution was observed to be relatively linear due to the small quantity of martensite volume fraction. The simulated result correlated with experimental work documented in the literature. The model can be used in other powder addition techniques where the martensite can be observed in the final microstructure.展开更多
Taking Pd_(2)MnTi as a representative example,we systematically investigate and theoretically reveal the electronic structure evolution during martensitic phase transition in all-d-metal Heusler compounds.The calculat...Taking Pd_(2)MnTi as a representative example,we systematically investigate and theoretically reveal the electronic structure evolution during martensitic phase transition in all-d-metal Heusler compounds.The calculation and theoretical analysis suggest that Pd_(2)MnTi is not stable in cubic structure and prone to transform to lowsymmetric tetragonal structure.By tetragonal deformation,the shrinkage of lattice parameters and the decrease of symmetry promote the electron accumulation between Pd and its first nearest neighboring Ti atom,resulting in the increasing covalent hybridization.The occurrence of pseudogap in density of states of tetragonal Pd_(2)MnTi near the Fermi level also verifies the enhancement of covalent bond.Comparatively,the stronger interatomic bond in tetragonal Pd_(2)MnTi,i.e.,covalent bond here,would strengthen interatomic coupling and consequently lower the energy of the material.By the martensitic phase transition,more stable states in energy are achieved.Thus,based on the analysis of electronic structure evolution,the nature of martensitic phase transition is a process wherein symmetry breaking weakens the original weak chemical bonds in high-symmetric parent phase and induces the strong chemical bond to lower the energy of the materials and to achieve a more stable state.This study could help to deepen the understanding of martensitic phase transition and the exploration of novel materials for potential technical applications.展开更多
The thermal-elastic martensitic transformation from high-temperature Ni_(2)In-type hexagonal structure to low-temperature TiNiSi-type orthorhombic structure has been widely studied in MnMX(M=Ni or Co,and X=Ge or Si)al...The thermal-elastic martensitic transformation from high-temperature Ni_(2)In-type hexagonal structure to low-temperature TiNiSi-type orthorhombic structure has been widely studied in MnMX(M=Ni or Co,and X=Ge or Si)alloys.However,the answer to how the orthorhombic martensite nucleates and grows within the hexagonal parent is still unclear.In this work,the hexagonal-orthorhombic martensitic transformation in a Co and Ge co-substituted MnNiSi is investigated.One can find some orthorhombic laths embedded in the hexagonal parent at a temperature above the martensitic transformation start temperature(M_(s)).With the the sample cooing to M_(s),the laths turn broader,indicating that the martensitic transformation starts from these pre-existing orthorhombic laths.Microstructure observation suggests that these pre-existing orthorhombic laths do not originate from the hexagonal-orthorhombic martensitic transformation because of the difference between atomic occupations of doping elements in the hexagonal parent and those in the preexisting orthorhombic laths.The phenomenological crystallographic theory and experimental investigations prove that the pre-existing orthorhombic lath and generated orthorhombic martensite have the same crystallography relationship to the hexagonal parent.Therefore,the orthorhombic martensite can take these pre-existing laths as embryos and grow up.This work implies that the martensitic transformation in MnNiSi_(1-x)(CoNiGe)_(x) alloy is initiated by orthorhombic embryos.展开更多
Controlling the content of athermal martensite and retained austenite is important to improving the mechanical properties of high-strength steels,but a mechanism for the accurate description of martensitic transformat...Controlling the content of athermal martensite and retained austenite is important to improving the mechanical properties of high-strength steels,but a mechanism for the accurate description of martensitic transformation during the cooling process must be addressed.At present,frequently used semi-empirical kinetics models suffer from huge errors at the beginning of transformation,and most of them fail to exhibit the sigmoidal shape characteristic of transformation curves.To describe the martensitic transformation process accurately,based on the Magee model,we introduced the changes in the nucleation activation energy of martensite with temperature,which led to the varying nucleation rates of this model during martensitic transformation.According to the calculation results,the relative error of the modified model for the martensitic transformation kinetics curves of Fe-C-X(X = Ni,Cr,Mn,Si) alloys reached 9.5% compared with those measured via the thermal expansion method.The relative error was approximately reduced by two-thirds compared with that of the Magee model.The incorporation of nucleation activation energy into the kinetics model contributes to the improvement of its precision.展开更多
Laser powder bed fusion(LPBF)is a widely recognized additive manufacturing technology that can fabricate complex components rapidly through layer-by-layer formation.However,there is a paucity of research on the effect...Laser powder bed fusion(LPBF)is a widely recognized additive manufacturing technology that can fabricate complex components rapidly through layer-by-layer formation.However,there is a paucity of research on the effect of laser scanning speed on the cellular microstructure and mechanical properties of martensitic stainless steel.This study systematically investigated the influence of laser scanning speed on the cellular microstructure and mechanical properties of a developed Fe11Cr8Ni5Co3Mo martensitic stainless steel produced by LPBF.The results show that increasing the laser scanning speed from 400 to 1000 mm/s does not lead to a noticeable change in the phase fraction,but it reduces the average size of the cellular microstructure from 0.60 to 0.35μm.The scanning speeds of 400 and 1000 mm/s both had adverse effects on performances of sample,resulting in inadequate fusion and keyhole defects respectively.The optimal scanning speed for fabricating samples was determined to be 800 mm/s,which obtained the highest room temperature tensile strength and elongation,with the ultimate tensile strength measured at(1088.3±2.0)MPa and the elongation of(16.76±0.10)%.Furthermore,the mechanism of the evolution of surface morphology,defects,and energy input were clarified,and the relationship between cellular microstructure size and mechanical properties was also established.展开更多
Ferritic/martensitic(F/M)steel is widely used as a structural material in thermal and nuclear power plants.However,it is susceptible to intergranular damage,which is a critical issue,under service conditions.In this s...Ferritic/martensitic(F/M)steel is widely used as a structural material in thermal and nuclear power plants.However,it is susceptible to intergranular damage,which is a critical issue,under service conditions.In this study,to improve the resistance to intergranular damage of F/M steel,a thermomechanical process(TMP)was employed to achieve a grain boundary engineering(GBE)microstructure in F/M steel P92.The TMP,including cold-rolling thickness reduction of 6%,9%,and 12%,followed by austenitization at 1323 K for 40 min and tempering at 1053 K for 45 min,was applied to the as-received(AR)P92 steel.The prior austenite grain(PAG)size,prior austenite grain boundary character distribution(GBCD),and connectivity of prior austenite grain boundaries(PAGBs)were investigated.Compared to the AR specimen,the PAG size did not change significantly.The fraction of coincident site lattice boundaries(CSLBs,3≤Σ≤29)and Σ3^(n) boundaries along PAGBs decreased with increasing reduction ratio because the recrystallization fraction increased with increasing reduction ratio.The PAGB connectivity of the 6%deformed specimen slightly deteriorated compared with that of the AR specimen.Moreover,potentiodynamic polarization studies revealed that the intergranular damage resistance of the studied steel could be improved by increasing the fraction of CSLBs along the PAGBs,indicating that the TMP,which involves low deformation,could enhance the intergranular damage resistance.展开更多
The reverse transformation temperature and recovery strain ratio of the martensite formed during the cooling process under a constant stress in TiNi shape memory alloy wires are studied in this paper. Results sh...The reverse transformation temperature and recovery strain ratio of the martensite formed during the cooling process under a constant stress in TiNi shape memory alloy wires are studied in this paper. Results show that a higher level of the applied constant stress during the cooling process will induce martensite with a higher reverse martensitic transformation start temperature As and a smaller recovery strain ratio. Similarly, a prestrain at the room temperature elevates the As temperature and decreases the recovery strain ratio. However, the As temperature and the recovery strain ratio of the martensite formed during the cooling process under a constant stress are lower than those of the martensite formed by prestrain at the room temperature.展开更多
The morphology and formation mechanism of the substructure of martensite in TC21 alloy was investigated by XRD and TEM. The results showed that the martensitic transformation from β to α" occurs upon quenching afte...The morphology and formation mechanism of the substructure of martensite in TC21 alloy was investigated by XRD and TEM. The results showed that the martensitic transformation from β to α" occurs upon quenching after solution treatment between 960-1000 ℃. The antiphase boundary (APB)-like structure was observed clearly in the α" martensite plates. The APB-like contrasts exist along the (001) and (020) planes of α" martensite. This APB-like structure of α" martensite was identified as a kind of stacking fault with an APB-like morphology induced by martensitic transformation and not by order/disorder transition. During martensitic transformation, martensitic domains nucleate and grow, eventually encounter each other, resulting in the formation of the APBdike contrast.展开更多
Tempering is an important process for T/P92 ferritic heat-resistant steel from the viewpoint of microstructure control, as it facili- tates the formation of final tempered martensite under serving conditions. In this ...Tempering is an important process for T/P92 ferritic heat-resistant steel from the viewpoint of microstructure control, as it facili- tates the formation of final tempered martensite under serving conditions. In this study, we have gained deeper insights on the mechanism underlying the microstructural evolution during tempering treatment, including the precipitation of carbides and the coarsening of martensite laths, as systematically analyzed by optical microscopy, transmission electron microscopy, and high-resolution transmission electron mi- croscopy. The chemical composition of the precipitates was analyzed using energy dispersive X-ray spectroscopy. Results indicate the for- mation of M3C (cementite) precipitates under normalized conditions. However, they tend to dissolve within a short time of tempering, owing to their low thermal stability. This phenomenon was substantiated by X-ray diffraction analysis. Besides, we could observe the precipitation of fine carbonitrides (MX) along the dislocations. The mechanism of carbon diffusion controlled growth of M23C6 can be expressed by the Zener's equation. The movement of Y-junctions was determined to be the fundamental mechanism underlying the martensite lath coarsening process. Vickers hardness was estimated to determine their mechanical properties. Based on the comprehensive analysis of both the micro- structural evolution and hardness variation, the process of tempering can be separated into three steps.展开更多
An Fe-0.2C-1.5Si-1.67Mn steel was subjected to quenching and partitioning (Q&P) process, and the interface migration between martensite and austenite at an elevated partitioning temperature was observed. The interf...An Fe-0.2C-1.5Si-1.67Mn steel was subjected to quenching and partitioning (Q&P) process, and the interface migration between martensite and austenite at an elevated partitioning temperature was observed. The interface migration is excluded in constrained paraequilibrium (CPE) model. Based on "endpoint" predicted by CPE model the thermodynamic condition of interface migration is analyzed, that is, the difference in the chemical potential of iron in both ferrite (martenisite) and austenite produces the driving force of the iron atoms to migrate from one phase to the other phase. In addition, the interface migration can change the austenite fraction; as a result, the austenite fraction at partitioning temperature may be higher than that at quenching temperature through the interface migration, but this phenomenon cannot be explained by CPE model.展开更多
The apparent morphologies of packet martensite in eight high carbon steels were researched by using optical microscope, scanning electron microscope, and transmission electron microscope. It was found that the apparen...The apparent morphologies of packet martensite in eight high carbon steels were researched by using optical microscope, scanning electron microscope, and transmission electron microscope. It was found that the apparent morphologies, substructures, and habit plane of packet martensite in high carbon steels are entirely different from that in low carbon steels; the substructures of packet martensite in high carbon steels possess fully twinned structure, while the substructures of individual coarse martensite plates in these steels bear both fully and partially twinned structures. The formation reason for apparent morphologies, substructures and two habit planes (i. e, { 111 }, and { 225}r) of high carbon martensite were discussed in detail.展开更多
To address the role of the HCP martensite in CoAl and CoNi shape memory alloys, the relationship between the shape memory effect (SME) and the content of the thermal and stress-induced HCP martensite was invest...To address the role of the HCP martensite in CoAl and CoNi shape memory alloys, the relationship between the shape memory effect (SME) and the content of the thermal and stress-induced HCP martensite was investigated in the solution-treated CoAl and CoNi alloys. In-situ optical observations were employed to investigate the contents of thermal HCP martensite before and after deep cooling and its influence on the stress-induced HCP martensite transformation and SME. The results show that the SME in both the CoAl and the CoNi alloys results from the stress-induced HCP martensite. The role of the thermal HCP martensite in both of them is the strengthening of the matrix. The much higher yield strength in the solution-treated CoAl alloy due to solution strengthening of Al is responsible for its better SME compared with the CoNi alloy.展开更多
The ultra-high cycle fatigue behavior of a novel high strength steel with carbide-free bainite/martensite (CFB/M) complex microstructure was studied. The ultra-high cycle fatigue properties were measured by ultrason...The ultra-high cycle fatigue behavior of a novel high strength steel with carbide-free bainite/martensite (CFB/M) complex microstructure was studied. The ultra-high cycle fatigue properties were measured by ultrasonic fatigue testing equipment at a frequency of 20 kHz. It is found that there is no horizontal part in the S-N curve and fatigue fracture occurs when the life of specimens exceeds 10^7 cycles. In addition, the origination of fatigue cracks tends to transfer from the surface to interior of specimens as the fatigue cycle exceeds 10^7, and the fatigue crack originations of many specimens are not induced by inclusions, but by some kind of "soft structure". It is shown that the studied high strength steel performs good ultra-high cycle fatigue properties. The ultra-high fatigue mechanism was discussed and it is suggested that specific CFB/M complex microstructure of the studied steel contributes to its superior properties.展开更多
The martensite transformation induced by tensile elongation and its effect onthe behavior of phase electrochemistry of AISI 304 and 316L in 3.5% NaCl solution were studied. Theresults show that the content of α′-mar...The martensite transformation induced by tensile elongation and its effect onthe behavior of phase electrochemistry of AISI 304 and 316L in 3.5% NaCl solution were studied. Theresults show that the content of α′-martensite in stainless steel 304 increases with the truestrain. As α′-martensite content increased, free corrosion potential and pitting potential ofstainless steel 304 in 3.5% NaCl solution appeared the change trend of a minimum. It was also foundthat pitting nucleated preferentially at the phase interfaces between martensite and austenite.There existed apparent difference between electrochemical properties of austenite and of martensitefor stainless steel 304 and 316L in 3.5% NaCl solution.展开更多
The as-quenched microstructures of low carbon steels were observed by scanning electron microscope, and the thin foil specimen was examined by transmission electron microscopy. It is found that the space morphology of...The as-quenched microstructures of low carbon steels were observed by scanning electron microscope, and the thin foil specimen was examined by transmission electron microscopy. It is found that the space morphology of low carbon martensite is not lath-like but thin sheet-like, which is designated as sheet-like martensite or packet thin sheet martensite. A three-dimensional model was presented. The reason for exhibiting two apparent morphologies, i.e. double contrast packet and simple contrast packet, in as-quenched low carbon steels was analyzed in detail. It is suggested that the data of martensitic habit plane measured by other procedures should be further inspected using optical metallographic method. The apparent morphologies of low carbon martensite confirm that its habit plane should be {557}_r, rather than {111}_r, {345}_r, nor {213}_r.展开更多
The reverse martensitic transformation of TiNi shape memory alloy fibers embedded in a pure aluminum matrix was studied in this paper. Results showed that the phase composition of the TiNi alloy fibers prior to prestr...The reverse martensitic transformation of TiNi shape memory alloy fibers embedded in a pure aluminum matrix was studied in this paper. Results showed that the phase composition of the TiNi alloy fibers prior to prestraining at the room temperature had a significant influence on the differential scanning calorimetry (DSC) results of the composites. By a comparison to the high temperature X-ray diffraction (XRD) results, it was confirmed that the martensite was divided into two groups: the self-accommodating martensite (SAM) and the preferentially oriented martensite (POM). The evolving process of the separation of martensite was discussed.展开更多
Three low-carbon dual-phase (DP) steels with almost constant martensite contents of 20vo1% were produced by intercritical annealing at different heating rates and soaking temperatures. Microstructures prepared at lo...Three low-carbon dual-phase (DP) steels with almost constant martensite contents of 20vo1% were produced by intercritical annealing at different heating rates and soaking temperatures. Microstructures prepared at low temperature (1043 K, FH1) with fast-heating (300 K/s) show banded ferrite/martensite structure, whereas those soaked at high temperature (1103 K, FH2) with fast heating reveal blocky martensite uniformly distributed in the fine-grained ferrite matrix. Their mechanical properties were tested under tensile conditions and compared to a slow-heated (5 K/s) reference material (SH0). The tensile tests indicate that for a given martensite volume fraction, the yield strength and total elongation values are noticeably affected by the refinement of ferrite grains and the martensite morphology. Metallographic observations reveal the formation of microvoids at the ferrite/martensite interface in the SH0 and FH2 samples, whereas microvoids nucleate via the fracture of banded martensite particles in the FH1 specimen. In addition, analyses of the work-hardening behaviors of the DP microstructures using the differential Crussard-Jaoul technique demonstrate two stages of work hardening for all samples.展开更多
文摘Welded mild steel is used in different applications in engineering. To strengthen the joint, the weld can be reinforced by adding titanium alloy powder to the joint. This results in the formation of incomplete martensite in a welded joint. The incomplete martensite affects mechanical properties. Therefore, this study aims to predict the volume fraction of martensite in reinforced butt welded joints to understand complex phenomena during microstructure formation. To do so, a combination of the finite element method to predict temperature history, and the Koistinen and Marburger equation, were used to predict the volume fraction of martensite. The martensite start temperature was calculated using chemical elements obtained from the dilution-based mixture rule. The curve shape of martensite evolution was observed to be relatively linear due to the small quantity of martensite volume fraction. The simulated result correlated with experimental work documented in the literature. The model can be used in other powder addition techniques where the martensite can be observed in the final microstructure.
基金supported by the special fund for introduced talent to initiate scientific research in Nanjing Tech Universitythe National Natural Science Foundation of China(Grant Nos.52088101 and 52325201)the National Key Research and Development Program of China(Grant No.2023YFA1607400)。
文摘Taking Pd_(2)MnTi as a representative example,we systematically investigate and theoretically reveal the electronic structure evolution during martensitic phase transition in all-d-metal Heusler compounds.The calculation and theoretical analysis suggest that Pd_(2)MnTi is not stable in cubic structure and prone to transform to lowsymmetric tetragonal structure.By tetragonal deformation,the shrinkage of lattice parameters and the decrease of symmetry promote the electron accumulation between Pd and its first nearest neighboring Ti atom,resulting in the increasing covalent hybridization.The occurrence of pseudogap in density of states of tetragonal Pd_(2)MnTi near the Fermi level also verifies the enhancement of covalent bond.Comparatively,the stronger interatomic bond in tetragonal Pd_(2)MnTi,i.e.,covalent bond here,would strengthen interatomic coupling and consequently lower the energy of the material.By the martensitic phase transition,more stable states in energy are achieved.Thus,based on the analysis of electronic structure evolution,the nature of martensitic phase transition is a process wherein symmetry breaking weakens the original weak chemical bonds in high-symmetric parent phase and induces the strong chemical bond to lower the energy of the materials and to achieve a more stable state.This study could help to deepen the understanding of martensitic phase transition and the exploration of novel materials for potential technical applications.
基金Project supported by the National Natural Science Foundation of China (Grant No.11974184)。
文摘The thermal-elastic martensitic transformation from high-temperature Ni_(2)In-type hexagonal structure to low-temperature TiNiSi-type orthorhombic structure has been widely studied in MnMX(M=Ni or Co,and X=Ge or Si)alloys.However,the answer to how the orthorhombic martensite nucleates and grows within the hexagonal parent is still unclear.In this work,the hexagonal-orthorhombic martensitic transformation in a Co and Ge co-substituted MnNiSi is investigated.One can find some orthorhombic laths embedded in the hexagonal parent at a temperature above the martensitic transformation start temperature(M_(s)).With the the sample cooing to M_(s),the laths turn broader,indicating that the martensitic transformation starts from these pre-existing orthorhombic laths.Microstructure observation suggests that these pre-existing orthorhombic laths do not originate from the hexagonal-orthorhombic martensitic transformation because of the difference between atomic occupations of doping elements in the hexagonal parent and those in the preexisting orthorhombic laths.The phenomenological crystallographic theory and experimental investigations prove that the pre-existing orthorhombic lath and generated orthorhombic martensite have the same crystallography relationship to the hexagonal parent.Therefore,the orthorhombic martensite can take these pre-existing laths as embryos and grow up.This work implies that the martensitic transformation in MnNiSi_(1-x)(CoNiGe)_(x) alloy is initiated by orthorhombic embryos.
基金financially supported by the National Natural Science Foundation of China(No.U2102212)the Shanghai Rising-Star Program(No.21QA1403200)。
文摘Controlling the content of athermal martensite and retained austenite is important to improving the mechanical properties of high-strength steels,but a mechanism for the accurate description of martensitic transformation during the cooling process must be addressed.At present,frequently used semi-empirical kinetics models suffer from huge errors at the beginning of transformation,and most of them fail to exhibit the sigmoidal shape characteristic of transformation curves.To describe the martensitic transformation process accurately,based on the Magee model,we introduced the changes in the nucleation activation energy of martensite with temperature,which led to the varying nucleation rates of this model during martensitic transformation.According to the calculation results,the relative error of the modified model for the martensitic transformation kinetics curves of Fe-C-X(X = Ni,Cr,Mn,Si) alloys reached 9.5% compared with those measured via the thermal expansion method.The relative error was approximately reduced by two-thirds compared with that of the Magee model.The incorporation of nucleation activation energy into the kinetics model contributes to the improvement of its precision.
基金financially supported by the National Natural Science Foundation of China(Nos.U2141205,52371002,and 52374366)the Fundamental Research Funds for the Central Universities(Nos.06109125 and 06930007)Fundamental Research Funds for the Central Universities(No.FRF-BD-23-02).
文摘Laser powder bed fusion(LPBF)is a widely recognized additive manufacturing technology that can fabricate complex components rapidly through layer-by-layer formation.However,there is a paucity of research on the effect of laser scanning speed on the cellular microstructure and mechanical properties of martensitic stainless steel.This study systematically investigated the influence of laser scanning speed on the cellular microstructure and mechanical properties of a developed Fe11Cr8Ni5Co3Mo martensitic stainless steel produced by LPBF.The results show that increasing the laser scanning speed from 400 to 1000 mm/s does not lead to a noticeable change in the phase fraction,but it reduces the average size of the cellular microstructure from 0.60 to 0.35μm.The scanning speeds of 400 and 1000 mm/s both had adverse effects on performances of sample,resulting in inadequate fusion and keyhole defects respectively.The optimal scanning speed for fabricating samples was determined to be 800 mm/s,which obtained the highest room temperature tensile strength and elongation,with the ultimate tensile strength measured at(1088.3±2.0)MPa and the elongation of(16.76±0.10)%.Furthermore,the mechanism of the evolution of surface morphology,defects,and energy input were clarified,and the relationship between cellular microstructure size and mechanical properties was also established.
基金supported by the National Natural Science Foundation of China(Nos.12175231 and 11805131),Anhui Natural Science Foundation of China(No.2108085J05)Projects of International Cooperation and Exchanges NSFC(No.51111140389)the Collaborative Innovation Program of the Hefei Science Center,CAS(Nos.2021HSC-CIP020 and 2022HSCCIP009).
文摘Ferritic/martensitic(F/M)steel is widely used as a structural material in thermal and nuclear power plants.However,it is susceptible to intergranular damage,which is a critical issue,under service conditions.In this study,to improve the resistance to intergranular damage of F/M steel,a thermomechanical process(TMP)was employed to achieve a grain boundary engineering(GBE)microstructure in F/M steel P92.The TMP,including cold-rolling thickness reduction of 6%,9%,and 12%,followed by austenitization at 1323 K for 40 min and tempering at 1053 K for 45 min,was applied to the as-received(AR)P92 steel.The prior austenite grain(PAG)size,prior austenite grain boundary character distribution(GBCD),and connectivity of prior austenite grain boundaries(PAGBs)were investigated.Compared to the AR specimen,the PAG size did not change significantly.The fraction of coincident site lattice boundaries(CSLBs,3≤Σ≤29)and Σ3^(n) boundaries along PAGBs decreased with increasing reduction ratio because the recrystallization fraction increased with increasing reduction ratio.The PAGB connectivity of the 6%deformed specimen slightly deteriorated compared with that of the AR specimen.Moreover,potentiodynamic polarization studies revealed that the intergranular damage resistance of the studied steel could be improved by increasing the fraction of CSLBs along the PAGBs,indicating that the TMP,which involves low deformation,could enhance the intergranular damage resistance.
基金supported by the National Natural Science Foundation of the People’s Republic of China under grant No.50071037.
文摘The reverse transformation temperature and recovery strain ratio of the martensite formed during the cooling process under a constant stress in TiNi shape memory alloy wires are studied in this paper. Results show that a higher level of the applied constant stress during the cooling process will induce martensite with a higher reverse martensitic transformation start temperature As and a smaller recovery strain ratio. Similarly, a prestrain at the room temperature elevates the As temperature and decreases the recovery strain ratio. However, the As temperature and the recovery strain ratio of the martensite formed during the cooling process under a constant stress are lower than those of the martensite formed by prestrain at the room temperature.
基金Project (2011AA030101) supported by the High-tech Research and Development Program of China
文摘The morphology and formation mechanism of the substructure of martensite in TC21 alloy was investigated by XRD and TEM. The results showed that the martensitic transformation from β to α" occurs upon quenching after solution treatment between 960-1000 ℃. The antiphase boundary (APB)-like structure was observed clearly in the α" martensite plates. The APB-like contrasts exist along the (001) and (020) planes of α" martensite. This APB-like structure of α" martensite was identified as a kind of stacking fault with an APB-like morphology induced by martensitic transformation and not by order/disorder transition. During martensitic transformation, martensitic domains nucleate and grow, eventually encounter each other, resulting in the formation of the APBdike contrast.
基金financially supported by the China National Funds for Distinguished Young Scientists(No.51325401)the International Thermonuclear Experimental Reactor(ITER)Program Special Project(No.2014GB125006)+1 种基金the National Natural Science Foundation of China(No.51104107)the Major State Basic Research Development Program(No.2014CB046805)
文摘Tempering is an important process for T/P92 ferritic heat-resistant steel from the viewpoint of microstructure control, as it facili- tates the formation of final tempered martensite under serving conditions. In this study, we have gained deeper insights on the mechanism underlying the microstructural evolution during tempering treatment, including the precipitation of carbides and the coarsening of martensite laths, as systematically analyzed by optical microscopy, transmission electron microscopy, and high-resolution transmission electron mi- croscopy. The chemical composition of the precipitates was analyzed using energy dispersive X-ray spectroscopy. Results indicate the for- mation of M3C (cementite) precipitates under normalized conditions. However, they tend to dissolve within a short time of tempering, owing to their low thermal stability. This phenomenon was substantiated by X-ray diffraction analysis. Besides, we could observe the precipitation of fine carbonitrides (MX) along the dislocations. The mechanism of carbon diffusion controlled growth of M23C6 can be expressed by the Zener's equation. The movement of Y-junctions was determined to be the fundamental mechanism underlying the martensite lath coarsening process. Vickers hardness was estimated to determine their mechanical properties. Based on the comprehensive analysis of both the micro- structural evolution and hardness variation, the process of tempering can be separated into three steps.
文摘An Fe-0.2C-1.5Si-1.67Mn steel was subjected to quenching and partitioning (Q&P) process, and the interface migration between martensite and austenite at an elevated partitioning temperature was observed. The interface migration is excluded in constrained paraequilibrium (CPE) model. Based on "endpoint" predicted by CPE model the thermodynamic condition of interface migration is analyzed, that is, the difference in the chemical potential of iron in both ferrite (martenisite) and austenite produces the driving force of the iron atoms to migrate from one phase to the other phase. In addition, the interface migration can change the austenite fraction; as a result, the austenite fraction at partitioning temperature may be higher than that at quenching temperature through the interface migration, but this phenomenon cannot be explained by CPE model.
文摘The apparent morphologies of packet martensite in eight high carbon steels were researched by using optical microscope, scanning electron microscope, and transmission electron microscope. It was found that the apparent morphologies, substructures, and habit plane of packet martensite in high carbon steels are entirely different from that in low carbon steels; the substructures of packet martensite in high carbon steels possess fully twinned structure, while the substructures of individual coarse martensite plates in these steels bear both fully and partially twinned structures. The formation reason for apparent morphologies, substructures and two habit planes (i. e, { 111 }, and { 225}r) of high carbon martensite were discussed in detail.
基金Projects(51171123,51271128)supported by the National Natural Science Foundation of China
文摘To address the role of the HCP martensite in CoAl and CoNi shape memory alloys, the relationship between the shape memory effect (SME) and the content of the thermal and stress-induced HCP martensite was investigated in the solution-treated CoAl and CoNi alloys. In-situ optical observations were employed to investigate the contents of thermal HCP martensite before and after deep cooling and its influence on the stress-induced HCP martensite transformation and SME. The results show that the SME in both the CoAl and the CoNi alloys results from the stress-induced HCP martensite. The role of the thermal HCP martensite in both of them is the strengthening of the matrix. The much higher yield strength in the solution-treated CoAl alloy due to solution strengthening of Al is responsible for its better SME compared with the CoNi alloy.
基金supported by the National Key Fundamental Research and Development Program of China (No.2004CB619105)
文摘The ultra-high cycle fatigue behavior of a novel high strength steel with carbide-free bainite/martensite (CFB/M) complex microstructure was studied. The ultra-high cycle fatigue properties were measured by ultrasonic fatigue testing equipment at a frequency of 20 kHz. It is found that there is no horizontal part in the S-N curve and fatigue fracture occurs when the life of specimens exceeds 10^7 cycles. In addition, the origination of fatigue cracks tends to transfer from the surface to interior of specimens as the fatigue cycle exceeds 10^7, and the fatigue crack originations of many specimens are not induced by inclusions, but by some kind of "soft structure". It is shown that the studied high strength steel performs good ultra-high cycle fatigue properties. The ultra-high fatigue mechanism was discussed and it is suggested that specific CFB/M complex microstructure of the studied steel contributes to its superior properties.
文摘The martensite transformation induced by tensile elongation and its effect onthe behavior of phase electrochemistry of AISI 304 and 316L in 3.5% NaCl solution were studied. Theresults show that the content of α′-martensite in stainless steel 304 increases with the truestrain. As α′-martensite content increased, free corrosion potential and pitting potential ofstainless steel 304 in 3.5% NaCl solution appeared the change trend of a minimum. It was also foundthat pitting nucleated preferentially at the phase interfaces between martensite and austenite.There existed apparent difference between electrochemical properties of austenite and of martensitefor stainless steel 304 and 316L in 3.5% NaCl solution.
文摘The as-quenched microstructures of low carbon steels were observed by scanning electron microscope, and the thin foil specimen was examined by transmission electron microscopy. It is found that the space morphology of low carbon martensite is not lath-like but thin sheet-like, which is designated as sheet-like martensite or packet thin sheet martensite. A three-dimensional model was presented. The reason for exhibiting two apparent morphologies, i.e. double contrast packet and simple contrast packet, in as-quenched low carbon steels was analyzed in detail. It is suggested that the data of martensitic habit plane measured by other procedures should be further inspected using optical metallographic method. The apparent morphologies of low carbon martensite confirm that its habit plane should be {557}_r, rather than {111}_r, {345}_r, nor {213}_r.
基金the National Natural Science Foundation of China under grant No. 59731030.
文摘The reverse martensitic transformation of TiNi shape memory alloy fibers embedded in a pure aluminum matrix was studied in this paper. Results showed that the phase composition of the TiNi alloy fibers prior to prestraining at the room temperature had a significant influence on the differential scanning calorimetry (DSC) results of the composites. By a comparison to the high temperature X-ray diffraction (XRD) results, it was confirmed that the martensite was divided into two groups: the self-accommodating martensite (SAM) and the preferentially oriented martensite (POM). The evolving process of the separation of martensite was discussed.
基金supported by the National Twelfth Five-year Science and Technology Support Program of China (Grant Nos. 2011BAE13B01 and 2011BAE13B03)
文摘Three low-carbon dual-phase (DP) steels with almost constant martensite contents of 20vo1% were produced by intercritical annealing at different heating rates and soaking temperatures. Microstructures prepared at low temperature (1043 K, FH1) with fast-heating (300 K/s) show banded ferrite/martensite structure, whereas those soaked at high temperature (1103 K, FH2) with fast heating reveal blocky martensite uniformly distributed in the fine-grained ferrite matrix. Their mechanical properties were tested under tensile conditions and compared to a slow-heated (5 K/s) reference material (SH0). The tensile tests indicate that for a given martensite volume fraction, the yield strength and total elongation values are noticeably affected by the refinement of ferrite grains and the martensite morphology. Metallographic observations reveal the formation of microvoids at the ferrite/martensite interface in the SH0 and FH2 samples, whereas microvoids nucleate via the fracture of banded martensite particles in the FH1 specimen. In addition, analyses of the work-hardening behaviors of the DP microstructures using the differential Crussard-Jaoul technique demonstrate two stages of work hardening for all samples.