The semi-solid slurry of 7075 aluminum alloy was prepared by a serpentine pouring channel (SCP). Influences of pouring temperature and the number of turns on the microstructure of semi-solid 7075 alloy slurry were i...The semi-solid slurry of 7075 aluminum alloy was prepared by a serpentine pouring channel (SCP). Influences of pouring temperature and the number of turns on the microstructure of semi-solid 7075 alloy slurry were investigated. The results demonstrated that the semi-solid 7075 aluminum alloy slurry with satisfied quality could be generated by a serpentine pouring channel when the pouring temperature was in the range of 680-700 ℃. At a given pouring temperature, the equivalent size of the primaryα(Al) grains decreased and the shape factor increased with the increase of the number of turns. During the slurry preparation of semi-solid 7075 aluminum alloy, the flow direction of alloy melt changed many times when it flowed in a curved and closed serpentine channel. With the effect of“stirring”in it , the primary nuclei gradually evolved into spherical and near-spherical grains.展开更多
Semi-solid A356 aluminum alloy slurry was prepared by using serpentine channel pouring process, and the influences of the channel diameters and pouring temperatures on the semi-solid A356 aluminum alloy slurry were in...Semi-solid A356 aluminum alloy slurry was prepared by using serpentine channel pouring process, and the influences of the channel diameters and pouring temperatures on the semi-solid A356 aluminum alloy slurry were investigated. The experimental results show that when the channel diameter is 20 and 25 mm, respectively, and the pouring temperature is 640-680 ℃, the average diameter of primary α(Al) grains in the prepared A356 aluminum alloy slurry is 50-75 and 55-78 μm, respectively, and the average shape factor of primary α(Al) grains is 0.89-0.76 and 0.86-0.72, respectively. With the decline in the pouring temperature, the microstructure of semi-solid A356 aluminum alloy slurry is more desirable and a serpentine channel with smaller diameter is also advantageous to the microstructure imProvement. During the preparation of semi-solid A356 aluminum alloy slurry, a large number of nuclei can be produced by the chilling effect of the serpentine channel, and owing to the combined effect of the chilled nuclei separation and melt self-stirring, primary α(Al) nuclei can be multiplied and spheroidized finally.展开更多
The semi-solid slurry of A380 aluminum alloy was prepared by the serpentine channel. The effects of pouring temperature, curve number and curve diameter of the serpentine channel on the microstructure of the semi-soli...The semi-solid slurry of A380 aluminum alloy was prepared by the serpentine channel. The effects of pouring temperature, curve number and curve diameter of the serpentine channel on the microstructure of the semi-solid A380 aluminum alloy slurry were investigated. The results show that the satisfactory semi-solid A380 aluminum alloy slurry could be obtained when the pouring temperature ranged from 630 to 650 °C. Under the same conditions, increasing the curve number or reducing the curve diameter of the serpentine channel would decrease the average diameter and increase the shape factor of the primary α(Al) grains. The "self-stirring" of the alloy melt in the serpentine channel was beneficial to the ripening of the dendrites and the spheroidizing of the primary α(Al) grains.展开更多
基金Project (2011CB606302-1) supported by the National Basic Research Program of China
文摘The semi-solid slurry of 7075 aluminum alloy was prepared by a serpentine pouring channel (SCP). Influences of pouring temperature and the number of turns on the microstructure of semi-solid 7075 alloy slurry were investigated. The results demonstrated that the semi-solid 7075 aluminum alloy slurry with satisfied quality could be generated by a serpentine pouring channel when the pouring temperature was in the range of 680-700 ℃. At a given pouring temperature, the equivalent size of the primaryα(Al) grains decreased and the shape factor increased with the increase of the number of turns. During the slurry preparation of semi-solid 7075 aluminum alloy, the flow direction of alloy melt changed many times when it flowed in a curved and closed serpentine channel. With the effect of“stirring”in it , the primary nuclei gradually evolved into spherical and near-spherical grains.
基金Project (2006AA03Z115) supported by the National High-tech Research and Development Program of ChinaProject (2006CB605203) supported by the National Basic Research Program of ChinaProject (50774007) supported by the National Natural Science Foundation of China
文摘Semi-solid A356 aluminum alloy slurry was prepared by using serpentine channel pouring process, and the influences of the channel diameters and pouring temperatures on the semi-solid A356 aluminum alloy slurry were investigated. The experimental results show that when the channel diameter is 20 and 25 mm, respectively, and the pouring temperature is 640-680 ℃, the average diameter of primary α(Al) grains in the prepared A356 aluminum alloy slurry is 50-75 and 55-78 μm, respectively, and the average shape factor of primary α(Al) grains is 0.89-0.76 and 0.86-0.72, respectively. With the decline in the pouring temperature, the microstructure of semi-solid A356 aluminum alloy slurry is more desirable and a serpentine channel with smaller diameter is also advantageous to the microstructure imProvement. During the preparation of semi-solid A356 aluminum alloy slurry, a large number of nuclei can be produced by the chilling effect of the serpentine channel, and owing to the combined effect of the chilled nuclei separation and melt self-stirring, primary α(Al) nuclei can be multiplied and spheroidized finally.
基金Project(2011CB606300)supported by the National Basic Research Program of ChinaProject(5077400)supported by the National Natural Science Foundation of China
文摘The semi-solid slurry of A380 aluminum alloy was prepared by the serpentine channel. The effects of pouring temperature, curve number and curve diameter of the serpentine channel on the microstructure of the semi-solid A380 aluminum alloy slurry were investigated. The results show that the satisfactory semi-solid A380 aluminum alloy slurry could be obtained when the pouring temperature ranged from 630 to 650 °C. Under the same conditions, increasing the curve number or reducing the curve diameter of the serpentine channel would decrease the average diameter and increase the shape factor of the primary α(Al) grains. The "self-stirring" of the alloy melt in the serpentine channel was beneficial to the ripening of the dendrites and the spheroidizing of the primary α(Al) grains.