期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于W2ID准则的RichModel隐写检测特征选取方法
被引量:
2
1
作者
马媛媛
徐久成
+2 位作者
张祎
杨春芳
罗向阳
《计算机学报》
EI
CAS
CSCD
北大核心
2021年第4期724-740,共17页
数字隐写是信息安全领域一个重要分支,其通过将秘密信息嵌入到数字图像、声音、视频等文件中并通过公开信道(如:Email邮箱、微博推文和即时通信等)进行传递,从而实现信息的隐蔽通信.图像自适应隐写是近年来数字隐写技术的研究热点,而Ric...
数字隐写是信息安全领域一个重要分支,其通过将秘密信息嵌入到数字图像、声音、视频等文件中并通过公开信道(如:Email邮箱、微博推文和即时通信等)进行传递,从而实现信息的隐蔽通信.图像自适应隐写是近年来数字隐写技术的研究热点,而Rich Model特征是检测图像自适应隐写的一大类主流高维特征,这类高维特征在实现对图像自适应隐写较高检测正确率的同时,带来了高额的计算开销和和存储开销,并使得隐写检测中的分类器训练变得极为困难.为此,本文提出了一种基于加权类间距离和类内距离差异准则(W2ID准则)的图像Rich Model隐写检测特征选取方法(记为W2ID-α方法).首先,在对Fisher-based方法这一隐写检测特征经典选取方法进行原理分析的基础上,指出该方法可能存在误删有用特征分量、保留冗余和冲突特征分量的不足;然后,通过将"类内距离差异"原则引入到隐写检测特征分量的可分性度量,提出了基于类间距离和类内距离差异的特征可分性度量准则(简记为2ID准则),给出了类内距离差异的一个相关性质;同时,为了合理体现"类间距离"的重要性,本文提出了基于频数统计加权法的权重分配算法,为该准则分配合理权重,使得对特征分量可分性的度量结果相比传统的Fisher准则更为准确;最后,依据W2ID准则的度量结果,基于决策粗糙集α-正域约简方法约简隐写检测特征分量,并在约简特征分量过程中,将每次处理一个特征分量改进为每次处理一组特征分量,以提升决策粗糙集α-正域约简的效率.提出的W2ID-α方法因无需设置可分性下限,避免了阈值设置不准确可能造成去除有用特征分量的问题,从而消除了现有Steganalysis-α隐写检测特征选取方法依赖经验参数的问题.基于数字隐写领域通用的BOSSbase-1.01图像库10 000幅原始图像和基于经典SI-UNIWARD隐写方法生成的多组隐写图像,针对从这些图像组每幅图像中提取的35263维J+SRM特征和17000维GFR特征(两类典型的图像Rich Model隐写检测特征),进行了一系列特征选取实验,结果表明:本文提出的W2ID-α方法能够在大幅降低Rich Model隐写检测特征维数的同时,基于选取后特征的隐写检测提高了对隐写图像的检测正确率,与Fisher-based、Steganalysis-α和PCA-based等现有典型特征选取方法相比具有显著优势,如对嵌入率=0.1的SI-UNIWARD隐写图像,基于提出的W2ID-α方法将J+SRM特征从35 263维降到2723维的同时,还提高了 3.63%的检测正确率.
展开更多
关键词
隐写检测
RichModel
特征选取
W2ID准则
α-正域约简
Fisher
-
based方法
下载PDF
职称材料
题名
基于W2ID准则的RichModel隐写检测特征选取方法
被引量:
2
1
作者
马媛媛
徐久成
张祎
杨春芳
罗向阳
机构
河南师范大学计算机与信息工程学院
中国人民解放军战略支援部队信息工程大学
数学工程与先进计算国家重点实验室
出处
《计算机学报》
EI
CAS
CSCD
北大核心
2021年第4期724-740,共17页
基金
国家自然科学基金(U1804263,U1636219,61772549,1736214,61872448)
国家重点研发计划(2016YFB0801303,2016QY01W0105)
+1 种基金
河南省科技创新杰出人才项目(184200510018)
河南省科技攻关项目(202102210165)资助。
文摘
数字隐写是信息安全领域一个重要分支,其通过将秘密信息嵌入到数字图像、声音、视频等文件中并通过公开信道(如:Email邮箱、微博推文和即时通信等)进行传递,从而实现信息的隐蔽通信.图像自适应隐写是近年来数字隐写技术的研究热点,而Rich Model特征是检测图像自适应隐写的一大类主流高维特征,这类高维特征在实现对图像自适应隐写较高检测正确率的同时,带来了高额的计算开销和和存储开销,并使得隐写检测中的分类器训练变得极为困难.为此,本文提出了一种基于加权类间距离和类内距离差异准则(W2ID准则)的图像Rich Model隐写检测特征选取方法(记为W2ID-α方法).首先,在对Fisher-based方法这一隐写检测特征经典选取方法进行原理分析的基础上,指出该方法可能存在误删有用特征分量、保留冗余和冲突特征分量的不足;然后,通过将"类内距离差异"原则引入到隐写检测特征分量的可分性度量,提出了基于类间距离和类内距离差异的特征可分性度量准则(简记为2ID准则),给出了类内距离差异的一个相关性质;同时,为了合理体现"类间距离"的重要性,本文提出了基于频数统计加权法的权重分配算法,为该准则分配合理权重,使得对特征分量可分性的度量结果相比传统的Fisher准则更为准确;最后,依据W2ID准则的度量结果,基于决策粗糙集α-正域约简方法约简隐写检测特征分量,并在约简特征分量过程中,将每次处理一个特征分量改进为每次处理一组特征分量,以提升决策粗糙集α-正域约简的效率.提出的W2ID-α方法因无需设置可分性下限,避免了阈值设置不准确可能造成去除有用特征分量的问题,从而消除了现有Steganalysis-α隐写检测特征选取方法依赖经验参数的问题.基于数字隐写领域通用的BOSSbase-1.01图像库10 000幅原始图像和基于经典SI-UNIWARD隐写方法生成的多组隐写图像,针对从这些图像组每幅图像中提取的35263维J+SRM特征和17000维GFR特征(两类典型的图像Rich Model隐写检测特征),进行了一系列特征选取实验,结果表明:本文提出的W2ID-α方法能够在大幅降低Rich Model隐写检测特征维数的同时,基于选取后特征的隐写检测提高了对隐写图像的检测正确率,与Fisher-based、Steganalysis-α和PCA-based等现有典型特征选取方法相比具有显著优势,如对嵌入率=0.1的SI-UNIWARD隐写图像,基于提出的W2ID-α方法将J+SRM特征从35 263维降到2723维的同时,还提高了 3.63%的检测正确率.
关键词
隐写检测
RichModel
特征选取
W2ID准则
α-正域约简
Fisher
-
based方法
Keywords
steganalysis
Rich Model
feature selection
W2ID criterion
α-
positive region reduction
Fisher
-
based method
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于W2ID准则的RichModel隐写检测特征选取方法
马媛媛
徐久成
张祎
杨春芳
罗向阳
《计算机学报》
EI
CAS
CSCD
北大核心
2021
2
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部