We study the distribution limit of a class of stochastic evolution equation driven by an additive-stable Non-Gaussian process in the case of α∈(1,2).We prove that,under suitable conditions,the law of the solution co...We study the distribution limit of a class of stochastic evolution equation driven by an additive-stable Non-Gaussian process in the case of α∈(1,2).We prove that,under suitable conditions,the law of the solution converges weakly to the law of a stochastic evolution equation with an additive Gaussian process.展开更多
针对脉冲噪声条件下利用传统广义互相关法(Generalized Cross-Correlation,GCC)进行时延(TDOA,Time Difference of Arrival)估计性能退化问题,提出一种基于最小1-范数准则的TDOA参数估计算法。对于高斯噪声,传统GCC估计方法能够实现统...针对脉冲噪声条件下利用传统广义互相关法(Generalized Cross-Correlation,GCC)进行时延(TDOA,Time Difference of Arrival)估计性能退化问题,提出一种基于最小1-范数准则的TDOA参数估计算法。对于高斯噪声,传统GCC估计方法能够实现统计最优,但当噪声的统计分布为非高斯分布时,利用传统GCC参数估计方法的估计精度和鲁棒性急剧下降。利用最小1-范数准则,提出一种存在α-稳定分布重尾脉冲噪声环境下的TDOA估计算法。系统仿真实验与结果分析表明,与传统GCC方法和分数低阶矩(Fractional Lower Order Moments,FLOM)方法相比,该算法在鲁棒性和估计精度方面均有明显改善。展开更多
The modeling of network traffic is important for the design and application of networks, but little is known as to the characteristics of distribution of packets in network traffic. In this letter the distribution of ...The modeling of network traffic is important for the design and application of networks, but little is known as to the characteristics of distribution of packets in network traffic. In this letter the distribution of packets in network traffic is explored.展开更多
基金Supported by the Science and Technology Research Projects of Hubei Provincial Department of Education(B2022077)。
文摘We study the distribution limit of a class of stochastic evolution equation driven by an additive-stable Non-Gaussian process in the case of α∈(1,2).We prove that,under suitable conditions,the law of the solution converges weakly to the law of a stochastic evolution equation with an additive Gaussian process.
文摘针对脉冲噪声条件下利用传统广义互相关法(Generalized Cross-Correlation,GCC)进行时延(TDOA,Time Difference of Arrival)估计性能退化问题,提出一种基于最小1-范数准则的TDOA参数估计算法。对于高斯噪声,传统GCC估计方法能够实现统计最优,但当噪声的统计分布为非高斯分布时,利用传统GCC参数估计方法的估计精度和鲁棒性急剧下降。利用最小1-范数准则,提出一种存在α-稳定分布重尾脉冲噪声环境下的TDOA估计算法。系统仿真实验与结果分析表明,与传统GCC方法和分数低阶矩(Fractional Lower Order Moments,FLOM)方法相比,该算法在鲁棒性和估计精度方面均有明显改善。
文摘The modeling of network traffic is important for the design and application of networks, but little is known as to the characteristics of distribution of packets in network traffic. In this letter the distribution of packets in network traffic is explored.