Al 2O 3-SiO 2-TiO 2-ZrO 2 supported membranes were prepar ed by Sol-Gel method. These composite ceramic membranes are level, even and no macro crack. There exist several crystalline phases such as Al 2O 3, TiO...Al 2O 3-SiO 2-TiO 2-ZrO 2 supported membranes were prepar ed by Sol-Gel method. These composite ceramic membranes are level, even and no macro crack. There exist several crystalline phases such as Al 2O 3, TiO 2(a natase), Al 2SiO 5, and ZrO 2 in these membranes. Changing the molar ratio of Al∶Si∶Ti∶Zr,the kinds and content of crystal phases of composite membranes could be different, which may lead to a variety of microstructure of membranes. The surface nanoscale topography and microstructure of membranes were investiga ted by XRD,SEM,AFM,EPMA. The effects of additives and heat treatments on the sur face nanoscale topography and microstructure of composite ceramic membranes were also analyzed.展开更多
Spinel lithium manganese oxide ion-sieves have been considered the most promising adsorbents to extract Li^+ from brines and sea water.Here,we report a lithium ion-sieve which was successfully loaded onto tubular α-A...Spinel lithium manganese oxide ion-sieves have been considered the most promising adsorbents to extract Li^+ from brines and sea water.Here,we report a lithium ion-sieve which was successfully loaded onto tubular α-Al2 O3 ceramic substrates by dipping crystallization and post-calcination method.The lithium manganese oxide Li4 Mn5 O(12)was first synthesized onto tubular α-Al2 O3 ceramic substrates as the ion-sieve precursor(i.e.L-AA),and the corresponding lithium ion-sieve(i.e.H-AA) was obtained after acid pickling.The chemical and morphological properties of the ion-sieve were confirmed by X-ray diffraction(XRD) and scanning electron microscopy(SEM).Both L-AA and H-AA showed characteristic peaks of α-Al2 O3 and cubic phase Li4 Mn5 O(12) and the peaks representing cubic phase could still exist after pickling.The lithium manganese oxide Li4 Mn5 O(12) could be uniformly loaded not only on the surface of α-Al2 O3 ubstrates but also inside the pores.Moreover,we found that the equilibrium adsorption capacity of H-AA was 22.9 mg·g^-1.After 12 h adsorption,the adsorption balance was reached.After 5 cycles of adsorption,the adsorption capacity of H-AA was 60.88% of the initial adsorption capacity.The process of H-AA adsorption for Li^+correlated with pseudo-second order kinetic model and Langmuir model.Adsorption thermodynamic parameters regarding enthalpy(△N), Gibbs free energy(△G) and entropy(AS) were calculated.For the dynamic adsorptiondesorption process of H-AA,the H-AA exhibited excellent adsorption performance to Li^+ with the Li^+ dynamic adsorption capacity of 9.74 mg·g^-1 and the Mn^2+dissolution loss rate of 0.99%.After 3 dynamic adsorption-desorption cycles,80% of the initial dynamic adsorption capacity was still kept.展开更多
The preparation process of γ-A12O3 nanofiltration membranes were studied by N2 absorption and desorption test and retention rate vs thickness gradient curve method. It was found that template and thermal treatment we...The preparation process of γ-A12O3 nanofiltration membranes were studied by N2 absorption and desorption test and retention rate vs thickness gradient curve method. It was found that template and thermal treatment were key factors for controlling pore size and its distribution. Under the optimized experimental conditions, the BJH (Barret-Joyner-Halenda) desorption average pore diameter, BJH desorption cumulative volume of pores and BET (Brunauer-Emmett-Teller) surface area of obtained membranes were about 3.9 nm, 0.33 cm3/g and 245 m2/g respectively, the pore size distribution was very narrow. Pore size decreased with the increasing of thickness and no evident change after the dense top layer was formed. The optimum thickness can be controlled by retention rate vs thickness gradient curve method.展开更多
This paper reports that polycrystalline (α-Al2O3:C ceramics are fabricated by conventional ceramics process. The excitation, emission spectra, thermoluminescence (TL) and optical stimulated luminescence (OSL) ...This paper reports that polycrystalline (α-Al2O3:C ceramics are fabricated by conventional ceramics process. The excitation, emission spectra, thermoluminescence (TL) and optical stimulated luminescence (OSL) of α-Al2O3:C polycrystalline ceramics are investigated. There exists 410nm maximum emission peak which is caused by recombination of an electron with F+ centre to produce an excited F centre. The samples show three clear TL glow peaks at 405, 493 and 610 K. The attenuation constant of exponentially decaying fast component (τ1) and slow component(τ2) of OSL curve are 8.43s and 41.73s, respectively. Those fluorescence and thermoluminescence characteristics are similar with α-Al2O3:C crystal.展开更多
γ-Al2O3 membranes were successfidly deposited on the top of porous α-Al2O3 support by sol-gel process and characterized by means of XRD , SEM, N2 adsorption and gas permeation. The γ-Al2O3 membranes, free of pin-h...γ-Al2O3 membranes were successfidly deposited on the top of porous α-Al2O3 support by sol-gel process and characterized by means of XRD , SEM, N2 adsorption and gas permeation. The γ-Al2O3 membranes, free of pin-holes and cracks, adhere tightly to the supports and have a thlekness of about 7μm. When sintered at 400 ℃ , γ-Al2O3 membranes have a rutrrow pore size distribution, with a pore diameter of 3.6nm, and the transport of both H2 and CO2 in supported γ-Al2O3 membrane is governed by Knudsen mechanism, with H2 permeance of 3.3× 10^-6 molm^-2Pa^-1s^-1 and H2/ CO2 permselectivity close to the ideal Knudsen value at 50 ℃ . The γ-Al2O3 membranes are suitable for being used as the substrates of microparoas membranes .展开更多
An AI^3+ sensor based on the membrane of acetyl cellulose containing nano γ-Al2O3 crystals was studied. In the buffer solution of 0.5 mol/L CH3COOH-CH3COONa (pH=5.0), the sensor responds to AI^3+ in a linear rang...An AI^3+ sensor based on the membrane of acetyl cellulose containing nano γ-Al2O3 crystals was studied. In the buffer solution of 0.5 mol/L CH3COOH-CH3COONa (pH=5.0), the sensor responds to AI^3+ in a linear range from 1.00×10^-5 to 1.00x10-^2 mol/L. A near-Nernstian response was obtained and the regression equation was E (mv) = -161.4-26.54 Ig [AI^3+] with a detection limit of 7.90x10^-6 mol/L. More than 14 different ions as the considered interferences were tested and the relevant selectivity coefficients were determined using the separate solution method (SSM). The sensor possesses many advantages including short conditioning time, fast response, and, especially, very good selectivity over a wide variety of other co-existing ions. The sample analysis on the aluminium migration amount from aluminium utensils to the solution was determined by this sensor. The analytical results were agreed with that of inductively coupled plasma-atomic emission spectroscopy(ICP-RES).展开更多
The catalytic hydrogenation of p-nitrophenol to p-aminophenol was investigated over Ni/Al2O3 catalyst on alumina support with different particle size. It is found that support particle size has significant influences ...The catalytic hydrogenation of p-nitrophenol to p-aminophenol was investigated over Ni/Al2O3 catalyst on alumina support with different particle size. It is found that support particle size has significant influences on physiochemical properties and catalytic activity of the resulting Ni/Al2O3 catalyst, but little influence on the selec-tivity. At a comparable amount of Ni loading, the catalytic activity of Ni/Al2O3 prepared with alumina support of smaller particle size is lower. The reduction behavior of the catalyst is a key factor in determining the catalytic activity of Ni/Al2O3 catalyst. The supported nickel catalyst 10.3Ni/Al2O3-3 improves the life span of the membrane by reducing fouling on the membrane surface compared to nano-sized nickel.展开更多
In this paper,we present a new method for preparing γ-alumina nanoparticles with a bimodal pore size distribution by using an efficiently mixing membrane dispersion microreactor.NH4HCO3and AI2(SO4)3.18H2Owere reacted...In this paper,we present a new method for preparing γ-alumina nanoparticles with a bimodal pore size distribution by using an efficiently mixing membrane dispersion microreactor.NH4HCO3and AI2(SO4)3.18H2Owere reacted under vigorous mixing to give an ammonium aluminum carbonate hydroxide (AACH)precursor.γ-Alumina was obtained by calcination of AACH at 550℃ for 6h.The effects of NH4HCO3concentration,pH during aging,and reaction temperature were investigated.The mechanism of bimodal pore formation was clarified.The results showed that large pores (10-100nm) were mainly formed in the reactor and during aging,and small pores (0-10nm)were mainly formed during calcination.When the concentration of NH4HCO3was 1.5mol/L,the aging pH was 9.2,and the reaction temperature was 80℃,γ-alumina with a specific surface area of 504.7m^2/g and pore volume of 1.76mL/g was obtained.The average size of the large pores was about 30nm,and the average size of the small pores was about 4nm.展开更多
文摘Al 2O 3-SiO 2-TiO 2-ZrO 2 supported membranes were prepar ed by Sol-Gel method. These composite ceramic membranes are level, even and no macro crack. There exist several crystalline phases such as Al 2O 3, TiO 2(a natase), Al 2SiO 5, and ZrO 2 in these membranes. Changing the molar ratio of Al∶Si∶Ti∶Zr,the kinds and content of crystal phases of composite membranes could be different, which may lead to a variety of microstructure of membranes. The surface nanoscale topography and microstructure of membranes were investiga ted by XRD,SEM,AFM,EPMA. The effects of additives and heat treatments on the sur face nanoscale topography and microstructure of composite ceramic membranes were also analyzed.
基金This work was financially supported by National Key Research and Development Program(2018YFE0203502),ChinaPrimary Research and Development Plan ofJiangsu Province(BE2019117),China and National Students'Platform for Innovation and Entrepreneurship Training(201910291051Z),China.
文摘Spinel lithium manganese oxide ion-sieves have been considered the most promising adsorbents to extract Li^+ from brines and sea water.Here,we report a lithium ion-sieve which was successfully loaded onto tubular α-Al2 O3 ceramic substrates by dipping crystallization and post-calcination method.The lithium manganese oxide Li4 Mn5 O(12)was first synthesized onto tubular α-Al2 O3 ceramic substrates as the ion-sieve precursor(i.e.L-AA),and the corresponding lithium ion-sieve(i.e.H-AA) was obtained after acid pickling.The chemical and morphological properties of the ion-sieve were confirmed by X-ray diffraction(XRD) and scanning electron microscopy(SEM).Both L-AA and H-AA showed characteristic peaks of α-Al2 O3 and cubic phase Li4 Mn5 O(12) and the peaks representing cubic phase could still exist after pickling.The lithium manganese oxide Li4 Mn5 O(12) could be uniformly loaded not only on the surface of α-Al2 O3 ubstrates but also inside the pores.Moreover,we found that the equilibrium adsorption capacity of H-AA was 22.9 mg·g^-1.After 12 h adsorption,the adsorption balance was reached.After 5 cycles of adsorption,the adsorption capacity of H-AA was 60.88% of the initial adsorption capacity.The process of H-AA adsorption for Li^+correlated with pseudo-second order kinetic model and Langmuir model.Adsorption thermodynamic parameters regarding enthalpy(△N), Gibbs free energy(△G) and entropy(AS) were calculated.For the dynamic adsorptiondesorption process of H-AA,the H-AA exhibited excellent adsorption performance to Li^+ with the Li^+ dynamic adsorption capacity of 9.74 mg·g^-1 and the Mn^2+dissolution loss rate of 0.99%.After 3 dynamic adsorption-desorption cycles,80% of the initial dynamic adsorption capacity was still kept.
文摘The preparation process of γ-A12O3 nanofiltration membranes were studied by N2 absorption and desorption test and retention rate vs thickness gradient curve method. It was found that template and thermal treatment were key factors for controlling pore size and its distribution. Under the optimized experimental conditions, the BJH (Barret-Joyner-Halenda) desorption average pore diameter, BJH desorption cumulative volume of pores and BET (Brunauer-Emmett-Teller) surface area of obtained membranes were about 3.9 nm, 0.33 cm3/g and 245 m2/g respectively, the pore size distribution was very narrow. Pore size decreased with the increasing of thickness and no evident change after the dense top layer was formed. The optimum thickness can be controlled by retention rate vs thickness gradient curve method.
基金supported by the National Natural Science Foundation of China (Grant No. 60578041)the Sciences and Technology Commission Foundation of Shanghai,China (Grant No. 08520707300)the Key Basic Research Project of Science and Technology of Shanghai (Grant No. 09JC1406500)
文摘This paper reports that polycrystalline (α-Al2O3:C ceramics are fabricated by conventional ceramics process. The excitation, emission spectra, thermoluminescence (TL) and optical stimulated luminescence (OSL) of α-Al2O3:C polycrystalline ceramics are investigated. There exists 410nm maximum emission peak which is caused by recombination of an electron with F+ centre to produce an excited F centre. The samples show three clear TL glow peaks at 405, 493 and 610 K. The attenuation constant of exponentially decaying fast component (τ1) and slow component(τ2) of OSL curve are 8.43s and 41.73s, respectively. Those fluorescence and thermoluminescence characteristics are similar with α-Al2O3:C crystal.
文摘γ-Al2O3 membranes were successfidly deposited on the top of porous α-Al2O3 support by sol-gel process and characterized by means of XRD , SEM, N2 adsorption and gas permeation. The γ-Al2O3 membranes, free of pin-holes and cracks, adhere tightly to the supports and have a thlekness of about 7μm. When sintered at 400 ℃ , γ-Al2O3 membranes have a rutrrow pore size distribution, with a pore diameter of 3.6nm, and the transport of both H2 and CO2 in supported γ-Al2O3 membrane is governed by Knudsen mechanism, with H2 permeance of 3.3× 10^-6 molm^-2Pa^-1s^-1 and H2/ CO2 permselectivity close to the ideal Knudsen value at 50 ℃ . The γ-Al2O3 membranes are suitable for being used as the substrates of microparoas membranes .
基金This work was supported by the National Natural Science Foundation of China (No. 20577017).
文摘An AI^3+ sensor based on the membrane of acetyl cellulose containing nano γ-Al2O3 crystals was studied. In the buffer solution of 0.5 mol/L CH3COOH-CH3COONa (pH=5.0), the sensor responds to AI^3+ in a linear range from 1.00×10^-5 to 1.00x10-^2 mol/L. A near-Nernstian response was obtained and the regression equation was E (mv) = -161.4-26.54 Ig [AI^3+] with a detection limit of 7.90x10^-6 mol/L. More than 14 different ions as the considered interferences were tested and the relevant selectivity coefficients were determined using the separate solution method (SSM). The sensor possesses many advantages including short conditioning time, fast response, and, especially, very good selectivity over a wide variety of other co-existing ions. The sample analysis on the aluminium migration amount from aluminium utensils to the solution was determined by this sensor. The analytical results were agreed with that of inductively coupled plasma-atomic emission spectroscopy(ICP-RES).
基金Supported by the Special Funds for Major State Basic Research Program of China (No.2003CB615702), the National Natural Science Foundation of China (No.20636020) and the Natural Science Foundation of Jiangsu Province (No.BK2006722).
文摘The catalytic hydrogenation of p-nitrophenol to p-aminophenol was investigated over Ni/Al2O3 catalyst on alumina support with different particle size. It is found that support particle size has significant influences on physiochemical properties and catalytic activity of the resulting Ni/Al2O3 catalyst, but little influence on the selec-tivity. At a comparable amount of Ni loading, the catalytic activity of Ni/Al2O3 prepared with alumina support of smaller particle size is lower. The reduction behavior of the catalyst is a key factor in determining the catalytic activity of Ni/Al2O3 catalyst. The supported nickel catalyst 10.3Ni/Al2O3-3 improves the life span of the membrane by reducing fouling on the membrane surface compared to nano-sized nickel.
基金This work was financially supported by the National Basic Research Foundation of China (grant number 2013CB733600)and the National Natural Science Foundation (grant numbers 21276140,20976096,and 21036002).
文摘In this paper,we present a new method for preparing γ-alumina nanoparticles with a bimodal pore size distribution by using an efficiently mixing membrane dispersion microreactor.NH4HCO3and AI2(SO4)3.18H2Owere reacted under vigorous mixing to give an ammonium aluminum carbonate hydroxide (AACH)precursor.γ-Alumina was obtained by calcination of AACH at 550℃ for 6h.The effects of NH4HCO3concentration,pH during aging,and reaction temperature were investigated.The mechanism of bimodal pore formation was clarified.The results showed that large pores (10-100nm) were mainly formed in the reactor and during aging,and small pores (0-10nm)were mainly formed during calcination.When the concentration of NH4HCO3was 1.5mol/L,the aging pH was 9.2,and the reaction temperature was 80℃,γ-alumina with a specific surface area of 504.7m^2/g and pore volume of 1.76mL/g was obtained.The average size of the large pores was about 30nm,and the average size of the small pores was about 4nm.