Electronic structure, stability and bonding strength of a-Fe/WC interfaces between Ce-doped and undoped WC cermet coating were investigated by first-principles methodology based on densityfunctional theory(DFT). Based...Electronic structure, stability and bonding strength of a-Fe/WC interfaces between Ce-doped and undoped WC cermet coating were investigated by first-principles methodology based on densityfunctional theory(DFT). Based on the minimum mismatched lattices, the relatively stable interface that forms between WC(100) and bcc a-Fe(100) was employed to predict the atomic structure, bonding,and ideal work of adhesion. There are three possible positions which were defined as OT, MT, HCP, taking into account both C-and W-terminations. The sequence of structural stability tested in this paper was:MT > OT > HCP. After full relaxation, the results show that only the first and second layers of the interface have significant influence on the electronic structure between Fe and WC. The interaction of Ce elements at the interface is achieved by comparing the interface structure and electronic structure of the doped and undoped interfaces. Ce doped interface possesses a shorter interface distance(d0 = 0.09776 nm)and a larger interface energy(Wad = 8.98 J/m2) than undoped interface(Wad = 8.76 J/m2,d0= 0.10134 nm).Charge density distribution and difference, and density of states were utilized to characterize the electronic properties and determine the interfacial bonding.The results demonstrate that strong covalent bonding existed in the undoped interface, while a mixed covalent/ionic bonding was formed at the Ce-doped interface.展开更多
ESD (electrospark deposition) is a promising process to produce hard and wear-resisting coatings on metallic substrates. In this paper microstructure and interfacial characteristics of the WC92-Co8 coated on titanium ...ESD (electrospark deposition) is a promising process to produce hard and wear-resisting coatings on metallic substrates. In this paper microstructure and interfacial characteristics of the WC92-Co8 coated on titanium and carbon steel are presented. A metallurgical bonding between the coating and substrate is obtained. The Ti element was found to distribute in WC92-Co8 at the metal pool, as well as the interface by diffusion. Some new phases were produced in the coating layer due to the chemical reaction during the ESD process. Experimental observation and thermodynamic analysis were utilized to study the mechanism of ESD.展开更多
Hysteresis loops,energy products and magnetic moment distributions of perpendicularly oriented Nd2Fe(14)B/α-Fe exchange-spring multilayers are studied systematically based on both three-dimensional(3D)and one-dimensi...Hysteresis loops,energy products and magnetic moment distributions of perpendicularly oriented Nd2Fe(14)B/α-Fe exchange-spring multilayers are studied systematically based on both three-dimensional(3D)and one-dimensional(1D)micromagnetic methods,focused on the influence of the interface anisotropy.The calculated results are carefully compared with each other.The interface anisotropy effect is very palpable on the nucleation,pinning and coercive fields when the soft layer is very thin.However,as the soft layer thickness increases,the pinning and coercive fields are almost unchanged with the increment of interface anisotropy though the nucleation field still monotonically rises.Negative interface anisotropy decreases the maximum energy products and increases slightly the angles between the magnetization and applied field.The magnetic moment distributions in the thickness direction at various applied fields demonstrate a progress of three-step magnetic reversal,i.e.,nucleation,evolution and irreversible motion of the domain wall.The above results calculated by two models are in good agreement with each other.Moreover,the in-plane magnetic moment orientations based on two models are different.The 3D calculation shows a progress of generation and disappearance of vortex state,however,the magnetization orientations within the film plane calculated by the 1D model are coherent.Simulation results suggest that negative interface anisotropy is necessarily avoided experimentally.展开更多
Nanocrystalline WC-Co composite powder and coated tungsten diamond by using vacuum vapor deposition were consolidated by the spark plasma sintering (SPS) process to prepare diamond-enhanced WC-Co cemented carbide co...Nanocrystalline WC-Co composite powder and coated tungsten diamond by using vacuum vapor deposition were consolidated by the spark plasma sintering (SPS) process to prepare diamond-enhanced WC-Co cemented carbide composite materials. The interface microstructures between coated tungsten diamond and WC-Co cemented carbide matrix were investigated by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDXS). The results showed that there is a transitional layer between the diamond and the matrix, in which the carbon content is 62.97wt.%, and the content of cobalt in the transitional zone is 6.19wt.%; the content of cobalt in the WC-Co cemented carbide matrix is 6.07wt.%, in which the carbon content is 15.95wt.%, and the content of cobalt on the surface of diamond is 7.30wt.%, in which the carbon content is 80.38wt.%. The transitional zone prevents the carbon atom of the diamond from spreading to the matrix, in which the carbon content does coincide with the theoretical value of the raw nanocomposite powders, and the carbon content forms a graded distribution among the matrix, transitional zone, and the surface of diamond; after the 1280℃ SPS consolidated process the diamond still maintains a very good crystal shape, the coated tungsten on the surface of the diamond improves thermal stability of the diamond and increases the bonding strength of the interface between the diamond and the matrix.展开更多
A WC-TiC-Co/CuZnNi composite layer was produced on 1045 steel substrate by means of inside-furnace brazing technique. The microstructure, phase constituent and interfacial diffusion behavior between cermet and CuZnNi ...A WC-TiC-Co/CuZnNi composite layer was produced on 1045 steel substrate by means of inside-furnace brazing technique. The microstructure, phase constituent and interfacial diffusion behavior between cermet and CuZnNi alloy were investigated by means of scanning electron microscopy (SEM), transmission electron microscope (TEM), electron probe microanalyzer (EPMA) and X-ray diffraction. The results showed that microstructure of matrix was α and β phases. Cermet particies were surrounded by the α+β phases in the composite layer and their sizes were almost similar to those in original state. The interfacial zone was formed by the mutual diffusion of elements under the condition of high temperature. The interface consists of WC, TiC, CuZn, and CuNi phases, and there are no microcracks and inclusions near the interface.展开更多
基金Project supported by National Natural Science Foundation of China(51505393)the National Key Research and Development Plan of China(2017YFB0305905)
文摘Electronic structure, stability and bonding strength of a-Fe/WC interfaces between Ce-doped and undoped WC cermet coating were investigated by first-principles methodology based on densityfunctional theory(DFT). Based on the minimum mismatched lattices, the relatively stable interface that forms between WC(100) and bcc a-Fe(100) was employed to predict the atomic structure, bonding,and ideal work of adhesion. There are three possible positions which were defined as OT, MT, HCP, taking into account both C-and W-terminations. The sequence of structural stability tested in this paper was:MT > OT > HCP. After full relaxation, the results show that only the first and second layers of the interface have significant influence on the electronic structure between Fe and WC. The interaction of Ce elements at the interface is achieved by comparing the interface structure and electronic structure of the doped and undoped interfaces. Ce doped interface possesses a shorter interface distance(d0 = 0.09776 nm)and a larger interface energy(Wad = 8.98 J/m2) than undoped interface(Wad = 8.76 J/m2,d0= 0.10134 nm).Charge density distribution and difference, and density of states were utilized to characterize the electronic properties and determine the interfacial bonding.The results demonstrate that strong covalent bonding existed in the undoped interface, while a mixed covalent/ionic bonding was formed at the Ce-doped interface.
文摘ESD (electrospark deposition) is a promising process to produce hard and wear-resisting coatings on metallic substrates. In this paper microstructure and interfacial characteristics of the WC92-Co8 coated on titanium and carbon steel are presented. A metallurgical bonding between the coating and substrate is obtained. The Ti element was found to distribute in WC92-Co8 at the metal pool, as well as the interface by diffusion. Some new phases were produced in the coating layer due to the chemical reaction during the ESD process. Experimental observation and thermodynamic analysis were utilized to study the mechanism of ESD.
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFB0700900)the National Natural Science Foundation of China(Grant Nos.51571126 and 51861030)+1 种基金the Inner Mongolia Autonomous Region Natural Science Foundation of China(Grant No.2019MS01002)the Inner Mongolia Innovative Research Team of China(Grant No.3400102)。
文摘Hysteresis loops,energy products and magnetic moment distributions of perpendicularly oriented Nd2Fe(14)B/α-Fe exchange-spring multilayers are studied systematically based on both three-dimensional(3D)and one-dimensional(1D)micromagnetic methods,focused on the influence of the interface anisotropy.The calculated results are carefully compared with each other.The interface anisotropy effect is very palpable on the nucleation,pinning and coercive fields when the soft layer is very thin.However,as the soft layer thickness increases,the pinning and coercive fields are almost unchanged with the increment of interface anisotropy though the nucleation field still monotonically rises.Negative interface anisotropy decreases the maximum energy products and increases slightly the angles between the magnetization and applied field.The magnetic moment distributions in the thickness direction at various applied fields demonstrate a progress of three-step magnetic reversal,i.e.,nucleation,evolution and irreversible motion of the domain wall.The above results calculated by two models are in good agreement with each other.Moreover,the in-plane magnetic moment orientations based on two models are different.The 3D calculation shows a progress of generation and disappearance of vortex state,however,the magnetization orientations within the film plane calculated by the 1D model are coherent.Simulation results suggest that negative interface anisotropy is necessarily avoided experimentally.
基金This work was financially supported by the National Natural Science Foundation of China (No. 50502026), the Chinese 863 Program (No. 2002AA302504), the Science Foundation of Wuhan University of Technology (No. xjj2005166), and the Key Project for Science and Technology Development of Wuhan City (No. 20041003068-04)
文摘Nanocrystalline WC-Co composite powder and coated tungsten diamond by using vacuum vapor deposition were consolidated by the spark plasma sintering (SPS) process to prepare diamond-enhanced WC-Co cemented carbide composite materials. The interface microstructures between coated tungsten diamond and WC-Co cemented carbide matrix were investigated by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDXS). The results showed that there is a transitional layer between the diamond and the matrix, in which the carbon content is 62.97wt.%, and the content of cobalt in the transitional zone is 6.19wt.%; the content of cobalt in the WC-Co cemented carbide matrix is 6.07wt.%, in which the carbon content is 15.95wt.%, and the content of cobalt on the surface of diamond is 7.30wt.%, in which the carbon content is 80.38wt.%. The transitional zone prevents the carbon atom of the diamond from spreading to the matrix, in which the carbon content does coincide with the theoretical value of the raw nanocomposite powders, and the carbon content forms a graded distribution among the matrix, transitional zone, and the surface of diamond; after the 1280℃ SPS consolidated process the diamond still maintains a very good crystal shape, the coated tungsten on the surface of the diamond improves thermal stability of the diamond and increases the bonding strength of the interface between the diamond and the matrix.
基金The work was supported by the foundati0n of the National Science Council of Shandong Province Government(Z2000F02)Youth Foundation of Shandong University.
文摘A WC-TiC-Co/CuZnNi composite layer was produced on 1045 steel substrate by means of inside-furnace brazing technique. The microstructure, phase constituent and interfacial diffusion behavior between cermet and CuZnNi alloy were investigated by means of scanning electron microscopy (SEM), transmission electron microscope (TEM), electron probe microanalyzer (EPMA) and X-ray diffraction. The results showed that microstructure of matrix was α and β phases. Cermet particies were surrounded by the α+β phases in the composite layer and their sizes were almost similar to those in original state. The interfacial zone was formed by the mutual diffusion of elements under the condition of high temperature. The interface consists of WC, TiC, CuZn, and CuNi phases, and there are no microcracks and inclusions near the interface.