Cubic and ellipsoide ultrafine monodispersed hematite colloidal particles wereprepared by hydrothermal reaction from Fe(OH)3 get in the presence of Sn4+ ions. Thenumbers of nuclei increase with the concentration of ...Cubic and ellipsoide ultrafine monodispersed hematite colloidal particles wereprepared by hydrothermal reaction from Fe(OH)3 get in the presence of Sn4+ ions. Thenumbers of nuclei increase with the concentration of Sn4+ ions. The initial concentrationof Fe(OH)3 gel might approach to 0.5 mol.L- 1. The products were characterized by TEMand XRD.展开更多
Four different hematite (-Fe2O3) nanopowders with various morphologi es have been synthesized in the presence of surfactant (HPC) via hydrothermal ro ute at 180 ℃, using four kinds of iron salts, Fe2(SO4)3, FeC2O4, F...Four different hematite (-Fe2O3) nanopowders with various morphologi es have been synthesized in the presence of surfactant (HPC) via hydrothermal ro ute at 180 ℃, using four kinds of iron salts, Fe2(SO4)3, FeC2O4, FeSO4 and (NH4 )3Fe(C2O4)3, as precursor materials. The products were characterized by means of X-ray diffraction (XRD), transmission electron micrograph (TEM), Fourier transf orm infrared spectroscopy (FTIR) and magnetization measurements. The hysteresis measurements show that the products exhibit weak ferromagnetic property at room temperature. It is concluded that the different precursor materials and the pres ence of the surfactant are important factors that exert significant effects on t he morphologies and magnetic properties of the products.展开更多
文摘Cubic and ellipsoide ultrafine monodispersed hematite colloidal particles wereprepared by hydrothermal reaction from Fe(OH)3 get in the presence of Sn4+ ions. Thenumbers of nuclei increase with the concentration of Sn4+ ions. The initial concentrationof Fe(OH)3 gel might approach to 0.5 mol.L- 1. The products were characterized by TEMand XRD.
文摘Four different hematite (-Fe2O3) nanopowders with various morphologi es have been synthesized in the presence of surfactant (HPC) via hydrothermal ro ute at 180 ℃, using four kinds of iron salts, Fe2(SO4)3, FeC2O4, FeSO4 and (NH4 )3Fe(C2O4)3, as precursor materials. The products were characterized by means of X-ray diffraction (XRD), transmission electron micrograph (TEM), Fourier transf orm infrared spectroscopy (FTIR) and magnetization measurements. The hysteresis measurements show that the products exhibit weak ferromagnetic property at room temperature. It is concluded that the different precursor materials and the pres ence of the surfactant are important factors that exert significant effects on t he morphologies and magnetic properties of the products.