Fiber-shaped energy storage devices are indispensable parts of wearable and portable electronics.Aqueous rechargeable Ni/Fe battery is a very appropriate energy storage device due to their good safety without organic ...Fiber-shaped energy storage devices are indispensable parts of wearable and portable electronics.Aqueous rechargeable Ni/Fe battery is a very appropriate energy storage device due to their good safety without organic electrolytes, high ionic conductivity, and low cost. Unfortunately, the low energy density,poor power density and cycling performance hinder its further practical applications. In this study, in order to obtain high performance negative iron-based material, we first synthesized a-iron oxide(α-Fe2O3) nanorods(NRs) with superstructures on the surface of highly conductive carbon nanotube fibers(CNTFs), then electrically conductive polypyrrole(PPy) was coated to enhance the electron, ion diffusion and cycle stability. The as-prepared α-Fe2O3@PPy NRs/CNTF electrode shows a high specific capacity of 0.62 Ah cm-3 at the current density of 1 A cm-3. Furthermore, the Ni/Fe battery that was assembled by the above negative electrode shows a maximum volumetric energy density of 15.47 mWh cm-3 with228.2 mW cm-3 at a current density of 1 A cm-3. The cycling durability and mechanical flexibility of the Ni/Fe battery were tested, which show good prospect for practical application. In summary, these merits make it possible for our Ni/Fe battery to have practical applications in next generation flexible energy storage devices.展开更多
This paper reports that/3-Ga2O3 nanorods have been synthesized by ammoniating Ga2O3 films on a V middle layer deposited on Si(111) substrates. The synthesized nanorods were confirmed as monoclinic Ga2O3 by x-ray dif...This paper reports that/3-Ga2O3 nanorods have been synthesized by ammoniating Ga2O3 films on a V middle layer deposited on Si(111) substrates. The synthesized nanorods were confirmed as monoclinic Ga2O3 by x-ray diffraction,Fourier transform infrared spectra. Scanning electron microscopy and transmission electron microscopy reveal that the grown β-Ga2O3 nanorods have a smooth and clean surface with diameters ranging from 100 nm to 200 nm and lengths typically up to 2μm. High resolution TEM and selected-area electron diffraction shows that the nanorods are pure monoclinic Ga2O3 single crystal. The photoluminescence spectrum indicates that the Ga2O3 nanorods have a good emission property. The growth mechanism is discussed briefly.展开更多
Nanocomposites of PAn-DBSA/γ-Fe 2O 3 with electrical and ferromagnetic behavior(σ= 2.18×10 -3-5.00×10 -5 S/cm, M s=3.7-16.6 m 2·A/kg, H c=8 805.2-9 133.1 A/m) were prepared by a chemical modification-...Nanocomposites of PAn-DBSA/γ-Fe 2O 3 with electrical and ferromagnetic behavior(σ= 2.18×10 -3-5.00×10 -5 S/cm, M s=3.7-16.6 m 2·A/kg, H c=8 805.2-9 133.1 A/m) were prepared by a chemical modification-redoping method in a neutral medium. The products were characterized by TEM, XRD, UV-Vis, four-probe method, and magnetometer. The results indicate that the electrical and magnetic properties of the nanocomposites strongly depend on γ-Fe 2O 3 content. With the increase of γ-Fe 2O 3 content, the electrical conductivity is decreased and saturation magnetization is increased.展开更多
Cubic and ellipsoide ultrafine monodispersed hematite colloidal particles wereprepared by hydrothermal reaction from Fe(OH)3 get in the presence of Sn4+ ions. Thenumbers of nuclei increase with the concentration of ...Cubic and ellipsoide ultrafine monodispersed hematite colloidal particles wereprepared by hydrothermal reaction from Fe(OH)3 get in the presence of Sn4+ ions. Thenumbers of nuclei increase with the concentration of Sn4+ ions. The initial concentrationof Fe(OH)3 gel might approach to 0.5 mol.L- 1. The products were characterized by TEMand XRD.展开更多
基金This work was supported by the National Natural Science Foundation of China (51972162 and 51703241)the Postdoctoral Foundation of Jiangsu Province (2019Z203 and 2019K001)the Science and Technology Project of Nanchang (2017-SJSYS008)
文摘Fiber-shaped energy storage devices are indispensable parts of wearable and portable electronics.Aqueous rechargeable Ni/Fe battery is a very appropriate energy storage device due to their good safety without organic electrolytes, high ionic conductivity, and low cost. Unfortunately, the low energy density,poor power density and cycling performance hinder its further practical applications. In this study, in order to obtain high performance negative iron-based material, we first synthesized a-iron oxide(α-Fe2O3) nanorods(NRs) with superstructures on the surface of highly conductive carbon nanotube fibers(CNTFs), then electrically conductive polypyrrole(PPy) was coated to enhance the electron, ion diffusion and cycle stability. The as-prepared α-Fe2O3@PPy NRs/CNTF electrode shows a high specific capacity of 0.62 Ah cm-3 at the current density of 1 A cm-3. Furthermore, the Ni/Fe battery that was assembled by the above negative electrode shows a maximum volumetric energy density of 15.47 mWh cm-3 with228.2 mW cm-3 at a current density of 1 A cm-3. The cycling durability and mechanical flexibility of the Ni/Fe battery were tested, which show good prospect for practical application. In summary, these merits make it possible for our Ni/Fe battery to have practical applications in next generation flexible energy storage devices.
基金Project supported by the State Key Program of the National Natural Science Foundation of China (Grant No 90201025)
文摘This paper reports that/3-Ga2O3 nanorods have been synthesized by ammoniating Ga2O3 films on a V middle layer deposited on Si(111) substrates. The synthesized nanorods were confirmed as monoclinic Ga2O3 by x-ray diffraction,Fourier transform infrared spectra. Scanning electron microscopy and transmission electron microscopy reveal that the grown β-Ga2O3 nanorods have a smooth and clean surface with diameters ranging from 100 nm to 200 nm and lengths typically up to 2μm. High resolution TEM and selected-area electron diffraction shows that the nanorods are pure monoclinic Ga2O3 single crystal. The photoluminescence spectrum indicates that the Ga2O3 nanorods have a good emission property. The growth mechanism is discussed briefly.
文摘Nanocomposites of PAn-DBSA/γ-Fe 2O 3 with electrical and ferromagnetic behavior(σ= 2.18×10 -3-5.00×10 -5 S/cm, M s=3.7-16.6 m 2·A/kg, H c=8 805.2-9 133.1 A/m) were prepared by a chemical modification-redoping method in a neutral medium. The products were characterized by TEM, XRD, UV-Vis, four-probe method, and magnetometer. The results indicate that the electrical and magnetic properties of the nanocomposites strongly depend on γ-Fe 2O 3 content. With the increase of γ-Fe 2O 3 content, the electrical conductivity is decreased and saturation magnetization is increased.
文摘Cubic and ellipsoide ultrafine monodispersed hematite colloidal particles wereprepared by hydrothermal reaction from Fe(OH)3 get in the presence of Sn4+ ions. Thenumbers of nuclei increase with the concentration of Sn4+ ions. The initial concentrationof Fe(OH)3 gel might approach to 0.5 mol.L- 1. The products were characterized by TEMand XRD.