Objective:To investigate the effects of tripterygium glycosides combined with compoundα-ketoacid tablets on inflammatory response, oxidative stress and urinary TGF-β1 and IV-C levels in patients with chronic renal f...Objective:To investigate the effects of tripterygium glycosides combined with compoundα-ketoacid tablets on inflammatory response, oxidative stress and urinary TGF-β1 and IV-C levels in patients with chronic renal failure.Methods: 102 patients with chronic renal failure admitted to Shuguang hospital from January 2017 to June 2018 were randomly divided into observation group (51 cases) and control group (51 cases). In the control group, the tripterygium glycosides tablets were orally administered, and the observation group was orally administered with tripterygium glycosides tablets and compoundα-keto acid tablets. The inflammatory response, oxidative stress index and urinary TGF-β1, IV-C levels were compared between the two groups.Results: There was no significant difference in CRP and TNF-α levels between the two groups before treatment (P>0.05). After treatment, the levels of CRP and TNF-α in the observation group were (9.32±1.10) mg/L and (3.14±0.36) ng/L, respectively, and the levels of CRP and TNF-α in the control group were (15.34±1.31) mg/ L, (5.01±0.53) ng / L. The CRP and TNF-α levels in the two groups were lower than those before treatment, and the CRP and TNF-α in the observation group were significantly lower than those in the control group (P<0.05). Before treatment, there was no significant difference in MDA, SOD and GSH-PX levels between the two groups (P>0.05). After treatment, the MDA level of the observation group was (3.01±0.32) μmol/L, and the MDA level of the control group was (5.17±0.61) μmol/L. The MDA of the two groups was lower than that before treatment, and the MDA of the observation group was significantly lower than that of the control group (P<0.05). After treatment, the levels of SOD and GSH-PX in the observation group were (101.45±13.16) U/L and (94.83±7.17) U/L, respectively. The levels of SOD and GSH-PX in the control group were (88.87±12.05) U/L, (87.38 ± 6.32) U/L. The SOD and GSH-PX of the two groups were higher than those before treatment, and the SOD and GSH-PX of the observation group were significantly higher than the control group (P<0.05). Before treatment, there was no significant difference in TGF-β1 and IV-C levels between the two groups (P>0.05). After treatment, the levels of TGF-β1 and IV-C in the observation group were (1.05±0.24) ng/L and (5.05±1.13) μg/L, respectively, and the levels of TGF-β1 and IV-C in the control group were (1.36±, respectively). 0.26) ng/L, (7.07±1.24) μg/L. The levels of TGF-β1 and IV-C in the two groups were lower than those before treatment, and the TGF-β1 and IV-C in the observation group were significantly lower than those in the control group (P<0.05).Conclusion: Tripterygium glycosides combined with compound -keto acid tablets can effectively reduce the inflammatory response, oxidative stress and renal interstitial fibrosis in patients with chronic renal failure.展开更多
AIM:To investigate the molecular mechanisms underlying the influence of hypoxia and alpha-ketoglutaric acid(α-KG)on scleral collagen expression.METHODS:Meta-analysis and clinical statistics were used to prove the cha...AIM:To investigate the molecular mechanisms underlying the influence of hypoxia and alpha-ketoglutaric acid(α-KG)on scleral collagen expression.METHODS:Meta-analysis and clinical statistics were used to prove the changes in choroidal thickness(ChT)during myopia.The establishment of a hypoxic myopia model(HYP)for rabbit scleral fibroblasts through hypoxic culture and the effects of hypoxia andα-KG on collagen expression were demonstrated by Sirius red staining.Transcriptome analysis was used to verify the genes and pathways that hypoxia andα-KG affect collagen expression.Finally,real-time quantitative reverse transcription polymerase chain reaction(RT-qPCR)was used for reverse verification.RESULTS:Meta-analysis results aligned with clinical statistics,revealing a thinning of ChT,leading to scleral hypoxia.Sirius red staining indicated lower collagen expression in the HYP group and higher collagen expression in the HYP+α-KG group,showed that hypoxia reduced collagen expression in scleral fibroblasts,whileα-KG can elevated collagen expression under HYP conditions.Transcriptome analysis unveiled the related genes and signaling pathways of hypoxia andα-KG affect scleral collagen expression and the results were verified by RT-qPCR.CONCLUSION:The potential molecular mechanisms through which hypoxia andα-KG influencing myopia is unraveled and three novel genes TLCD4,TBC1D4,and EPHX3 are identified.These findings provide a new perspective on the prevention and treatment of myopia via regulating collagen expression.展开更多
The sleep-wake cycle stands as an integrative process essential for sustaining optimal brain function and,either directly or indirectly,overall body health,encompassing metabolic and cardiovascular well-being.Given th...The sleep-wake cycle stands as an integrative process essential for sustaining optimal brain function and,either directly or indirectly,overall body health,encompassing metabolic and cardiovascular well-being.Given the heightened metabolic activity of the brain,there exists a considerable demand for nutrients in comparison to other organs.Among these,the branched-chain amino acids,comprising leucine,isoleucine,and valine,display distinctive significance,from their contribution to protein structure to their involvement in overall metabolism,especially in cerebral processes.Among the first amino acids that are released into circulation post-food intake,branched-chain amino acids assume a pivotal role in the regulation of protein synthesis,modulating insulin secretion and the amino acid sensing pathway of target of rapamycin.Branched-chain amino acids are key players in influencing the brain's uptake of monoamine precursors,competing for a shared transporter.Beyond their involvement in protein synthesis,these amino acids contribute to the metabolic cycles ofγ-aminobutyric acid and glutamate,as well as energy metabolism.Notably,they impact GABAergic neurons and the excitation/inhibition balance.The rhythmicity of branchedchain amino acids in plasma concentrations,observed over a 24-hour cycle and conserved in rodent models,is under circadian clock control.The mechanisms underlying those rhythms and the physiological consequences of their disruption are not fully understood.Disturbed sleep,obesity,diabetes,and cardiovascular diseases can elevate branched-chain amino acid concentrations or modify their oscillatory dynamics.The mechanisms driving these effects are currently the focal point of ongoing research efforts,since normalizing branched-chain amino acid levels has the ability to alleviate the severity of these pathologies.In this context,the Drosophila model,though underutilized,holds promise in shedding new light on these mechanisms.Initial findings indicate its potential to introduce novel concepts,particularly in elucidating the intricate connections between the circadian clock,sleep/wake,and metabolism.Consequently,the use and transport of branched-chain amino acids emerge as critical components and orchestrators in the web of interactions across multiple organs throughout the sleep/wake cycle.They could represent one of the so far elusive mechanisms connecting sleep patterns to metabolic and cardiovascular health,paving the way for potential therapeutic interventions.展开更多
The conventional perception of astrocytes as mere supportive cells within the brain has recently been called into question by empirical evidence, which has revealed their active involvement in regulating brain functio...The conventional perception of astrocytes as mere supportive cells within the brain has recently been called into question by empirical evidence, which has revealed their active involvement in regulating brain function and encoding behaviors associated with emotions.Specifically, astrocytes in the basolateral amygdala have been found to play a role in the modulation of anxiety-like behaviors triggered by chronic stress. Nevertheless, the precise molecular mechanisms by which basolateral amygdala astrocytes regulate chronic stress–induced anxiety-like behaviors remain to be fully elucidated. In this study, we found that in a mouse model of anxiety triggered by unpredictable chronic mild stress, the expression of excitatory amino acid transporter 2 was upregulated in the basolateral amygdala. Interestingly, our findings indicate that the targeted knockdown of excitatory amino acid transporter 2 specifically within the basolateral amygdala astrocytes was able to rescue the anxiety-like behavior in mice subjected to stress. Furthermore, we found that the overexpression of excitatory amino acid transporter 2 in the basolateral amygdala, whether achieved through intracranial administration of excitatory amino acid transporter 2agonists or through injection of excitatory amino acid transporter 2-overexpressing viruses with GfaABC1D promoters, evoked anxiety-like behavior in mice. Our single-nucleus RNA sequencing analysis further confirmed that chronic stress induced an upregulation of excitatory amino acid transporter 2 specifically in astrocytes in the basolateral amygdala. Moreover, through in vivo calcium signal recordings, we found that the frequency of calcium activity in the basolateral amygdala of mice subjected to chronic stress was higher compared with normal mice.After knocking down the expression of excitatory amino acid transporter 2 in the basolateral amygdala, the frequency of calcium activity was not significantly increased, and anxiety-like behavior was obviously mitigated. Additionally, administration of an excitatory amino acid transporter 2 inhibitor in the basolateral amygdala yielded a notable reduction in anxiety level among mice subjected to stress. These results suggest that basolateral amygdala astrocytic excitatory amino acid transporter 2 plays a role in in the regulation of unpredictable chronic mild stress-induced anxiety-like behavior by impacting the activity of local glutamatergic neurons, and targeting excitatory amino acid transporter 2 in the basolateral amygdala holds therapeutic promise for addressing anxiety disorders.展开更多
The involvement of the excitatory amino acids glutamate and aspartate in ce rebral ischemia and excitotoxicity is well-documented.Nevertheless,the role of non-excitatory amino acids in brain damage following a stroke ...The involvement of the excitatory amino acids glutamate and aspartate in ce rebral ischemia and excitotoxicity is well-documented.Nevertheless,the role of non-excitatory amino acids in brain damage following a stroke or brain trauma remains largely understudied.The release of amino acids by necrotic cells in the ischemic core may contribute to the expansion of the penumbra.Our findings indicated that the reversible loss of field excitato ry postsynaptic potentials caused by transient hypoxia became irreversible when exposed to a mixture of just four non-excitatory amino acids(L-alanine,glycine,L-glutamine,and L-serine)at their plasma concentrations.These amino acids induce swelling in the somas of neurons and astrocytes during hypoxia,along with permanent dendritic damage mediated by N-methyl-D-aspartate receptors.Blocking N-methyl-D-aspartate receptors prevented neuronal damage in the presence of these amino acids during hypoxia.It is likely that astroglial swelling caused by the accumulation of these amino acids via the alanine-serine-cysteine transporter 2 exchanger and system N transporters activates volume-regulated anion channels,leading to the release of excitotoxins and subsequent neuronal damage through N-methyl-D-aspartate receptor activation.Thus,previously unrecognized mechanisms involving non-excitatory amino acids may contribute to the progression and expansion of brain injury in neurological emergencies such as stroke and traumatic brain injury.Understanding these pathways co uld highlight new therapeutic targets to mitigate brain injury.展开更多
BACKGROUND Pancreatic ductal adenocarcinoma(PDAC)is an aggressive lethal malignancy with limited options for treatment and a 5-year survival rate of 11%in the United States.As for other types of tumors,such as colorec...BACKGROUND Pancreatic ductal adenocarcinoma(PDAC)is an aggressive lethal malignancy with limited options for treatment and a 5-year survival rate of 11%in the United States.As for other types of tumors,such as colorectal cancer,aberrant de novo lipid synthesis and reprogrammed lipid metabolism have been suggested to be associated with PDAC development and progression.AIM To identify the possible involvement of lipid metabolism in PDAC by analyzing in tumoral and non-tumoral tissues the expression level of the most relevant genes involved in the long-chain fatty acid(FA)import into cell.METHODS A gene expression analysis of FASN,CD36,SLC27A1,SLC27A2,SLC27A3,SLC27A4,SLC27A5,ACSL1,and ACSL3 was performed by qRT-PCR in 24 tumoral PDAC tissues and 11 samples from non-tumoral pancreatic tissues obtained via fine needle aspiration or via surgical resection.The genes were considered significantly dysregulated between the groups when the p value was<0.05 and the fold change(FC)was≤0.5 and≥2.RESULTS We found that three FA transporters and two long-chain acyl-CoA synthetases genes were significantly upregulated in the PDAC tissue compared to the non-tumoral tissue:SLC27A2(FC=5.66;P=0.033),SLC27A3(FC=2.68;P=0.040),SLC27A4(FC=3.13;P=0.033),ACSL1(FC=4.10;P<0.001),and ACSL3(FC=2.67;P=0.012).We further investigated any possible association between the levels of the analyzed mRNAs and the specific characteristics of the tumors,including the anatomic location,the lymph node involvement,and the presence of metastasis.A significant difference in the expression of SLC27A3(FC=3.28;P=0.040)was found comparing patients with and without lymph nodes involvement with an overexpression of this transcript in 17 patients presenting tumoral cells in the lymph nodes.CONCLUSION Despite the low number of patients analyzed,these preliminary results seem to be promising.Addressing lipid metabolism through a broad strategy could be a beneficial way to treat this malignancy.Future in vitro and in vivo studies on these genes may offer important insights into the mechanisms linking PDAC with the long-chain FA import pathway.展开更多
There is a need to develop interventions to slow or reverse the degeneration of dopamine neurons in Parkinson’s disease after diagnosis.Given that preclinical and clinical studies suggest benefits of dietary n-3 poly...There is a need to develop interventions to slow or reverse the degeneration of dopamine neurons in Parkinson’s disease after diagnosis.Given that preclinical and clinical studies suggest benefits of dietary n-3 polyunsaturated fatty acids,such as docosahexaenoic acid,and exercise in Parkinson’s disease,we investigated whether both could synergistically interact to induce recovery of the dopaminergic pathway.First,mice received a unilateral stereotactic injection of 6-hydroxydopamine into the striatum to establish an animal model of nigrostriatal denervation.Four weeks after lesion,animals were fed a docosahexaenoic acid-enriched or a control diet for the next 8 weeks.During this period,the animals had access to a running wheel,which they could use or not.Docosahexaenoic acid treatment,voluntary exercise,or the combination of both had no effect on(i)distance traveled in the open field test,(ii)the percentage of contraversive rotations in the apomorphine-induction test or(iii)the number of tyrosine-hydroxylase-positive cells in the substantia nigra pars compacta.However,the docosahexaenoic acid diet increased the number of tyrosine-hydroxylase-positive terminals and induced a rise in dopamine concentrations in the lesioned striatum.Compared to docosahexaenoic acid treatment or exercise alone,the combination of docosahexaenoic acid and exercise(i)improved forelimb balance in the stepping test,(ii)decreased the striatal DOPAC/dopamine ratio and(iii)led to increased dopamine transporter levels in the lesioned striatum.The present results suggest that the combination of exercise and docosahexaenoic acid may act synergistically in the striatum of mice with a unilateral lesion of the dopaminergic system and provide support for clinical trials combining nutrition and physical exercise in the treatment of Parkinson’s disease.展开更多
It has been shown clinically that continuous removal of ischemia/reperfusion-induced reactive oxygen species is not conducive to the recovery of late stroke.Indeed,previous studies have shown that excessive increases ...It has been shown clinically that continuous removal of ischemia/reperfusion-induced reactive oxygen species is not conducive to the recovery of late stroke.Indeed,previous studies have shown that excessive increases in hypochlorous acid after stroke can cause severe damage to brain tissue.Our previous studies have found that a small amount of hypochlorous acid still exists in the later stage of stroke,but its specific role and mechanism are currently unclear.To simulate stroke in vivo,a middle cerebral artery occlusion rat model was established,with an oxygen-glucose deprivation/reoxygenation model established in vitro to mimic stroke.We found that in the early stage(within 24 hours)of ischemic stroke,neutrophils produced a large amount of hypochlorous acid,while in the recovery phase(10 days after stroke),microglia were activated and produced a small amount of hypochlorous acid.Further,in acute stroke in rats,hypochlorous acid production was prevented using a hypochlorous acid scavenger,taurine,or myeloperoxidase inhibitor,4-aminobenzoic acid hydrazide.Our results showed that high levels of hypochlorous acid(200μM)induced neuronal apoptosis after oxygen/glucose deprivation/reoxygenation.However,in the recovery phase of the middle cerebral artery occlusion model,a moderate level of hypochlorous acid promoted the proliferation and differentiation of neural stem cells into neurons and astrocytes.This suggests that hypochlorous acid plays different roles at different phases of cerebral ischemia/reperfusion injury.Lower levels of hypochlorous acid(5 and 100μM)promoted nuclear translocation ofβ-catenin.By transfection of single-site mutation plasmids,we found that hypochlorous acid induced chlorination of theβ-catenin tyrosine 30 residue,which promoted nuclear translocation.Altogether,our study indicates that maintaining low levels of hypochlorous acid plays a key role in the recovery of neurological function.展开更多
Recent studies have suggested that abnormal acidification of lysosomes induces autophagic accumulation of amyloid-βin neurons,which is a key step in senile plaque formation.Therefore,resto ring normal lysosomal funct...Recent studies have suggested that abnormal acidification of lysosomes induces autophagic accumulation of amyloid-βin neurons,which is a key step in senile plaque formation.Therefore,resto ring normal lysosomal function and rebalancing lysosomal acidification in neurons in the brain may be a new treatment strategy for Alzheimer's disease.Microtubule acetylation/deacetylation plays a central role in lysosomal acidification.Here,we show that inhibiting the classic microtubule deacetylase histone deacetylase 6 with an histone deacetylase 6 shRNA or thehistone deacetylase 6 inhibitor valproic acid promoted lysosomal reacidification by modulating V-ATPase assembly in Alzheimer's disease.Fu rthermore,we found that treatment with valproic acid markedly enhanced autophagy.promoted clearance of amyloid-βaggregates,and ameliorated cognitive deficits in a mouse model of Alzheimer's disease.Our findings demonstrate a previously unknown neuroprotective mechanism in Alzheimer's disease,in which histone deacetylase 6 inhibition by valproic acid increases V-ATPase assembly and lysosomal acidification.展开更多
The presence of endogenous neural stem/progenitor cells in the adult mammalian brain suggests that the central nervous system can be repaired and regenerated after injury.However,whether it is possible to stimulate ne...The presence of endogenous neural stem/progenitor cells in the adult mammalian brain suggests that the central nervous system can be repaired and regenerated after injury.However,whether it is possible to stimulate neurogenesis and reconstruct cortical layers II to VI in non-neurogenic regions,such as the cortex,remains unknown.In this study,we implanted a hyaluronic acid collagen gel loaded with basic fibroblast growth factor into the motor cortex immediately following traumatic injury.Our findings reveal that this gel effectively stimulated the proliferation and migration of endogenous neural stem/progenitor cells,as well as their differentiation into mature and functionally integrated neurons.Importantly,these new neurons reconstructed the architecture of cortical layers II to VI,integrated into the existing neural circuitry,and ultimately led to improved brain function.These findings offer novel insight into potential clinical treatments for traumatic cerebral cortex injuries.展开更多
Lactococcus lactis is an important food-grade microorganism that has been successfully applied as a starter to increase the level of 3-methylbutanal produced during the ripening of cheese.Three variants of branched-ch...Lactococcus lactis is an important food-grade microorganism that has been successfully applied as a starter to increase the level of 3-methylbutanal produced during the ripening of cheese.Three variants of branched-chain α-keto acid decarboxylase (KADC) were discovered in L.lactis strains with different 3-methylbutanal production abilities.Three genes encoding KADCs of varying lengths (KADC-long,KADC-middle,and KADC-short) were cloned and heterologously expressed into Escherichia coli.KADC activity was only detected in the E.coli cloned with the KADC-long-encoding gene.Homology modeling of the three KADC recombination proteins showed that an active-site residue (Glu462) and an S-pocket structure were necessary for the ability to catalyze substrates.KADC-long showed maximum activity at pH 7.0 and 30 ℃.The substrate hydrolysis and kinetic parameters demonstrated that KADC-long efficiently produces 2-methylbutanal and 3-methylbutanal.The heterologous expression of the full-length kdcA in low-3-methylbutanal-yield L.lactis strains increased their production yields.The results of this study demonstrate the function of the complete KADC in 3-methylbutanal production.展开更多
As a kind of environmentally benign reagents,α-keto acids have been extensively employed as key starting materials in organic synthesis.Organic electrosynthesis has the advantages of reducing byproduct generation,imp...As a kind of environmentally benign reagents,α-keto acids have been extensively employed as key starting materials in organic synthesis.Organic electrosynthesis has the advantages of reducing byproduct generation,improving the cost-efficiency of synthetic processes,and accessing reactive intermediates under mild conditions.Inspired by the merits of organic electrosynthesis,α-keto acids have shown many synthetic applications in electrochemical acylation,cyclization,and reductive amination reactions with improved efficiencies and selectivities.This review covers the recent breakthroughs achieved in the electrochemical transformations ofα-keto acids,aimed at highlighting these electrochemical reactions’features and mechanistic rationalisations.Meanwhile,the practicalities and limitations of these transformations are also presented where possible.展开更多
Frankincense can promote blood circulation. Acetyl-11-keto-β-boswellic acid (AKBA) is a small molecule with anti-inflammatory properties that is derived from Boswellia serrata. Here, we hypothesized that it may pro...Frankincense can promote blood circulation. Acetyl-11-keto-β-boswellic acid (AKBA) is a small molecule with anti-inflammatory properties that is derived from Boswellia serrata. Here, we hypothesized that it may promote regeneration of injured sciatic nerve. To address this hypothesis, we established a rat model of sciatic nerve injury using a nerve clamping method. Rats were administered AKBA once every 2 days at doses of 1.5, 3, and 6 mg/kg by intraperitoneal injection for 30 days from the 1st day after injury. Sciatic nerve function was evaluated using the sciatic functional index. Degree of muscle atrophy was measured using the triceps surae muscle Cuadros index.Neuropathological changes were observed by hematoxylin-eosin staining. Western blot analysis was used to detect expression of phospho-extracellular signal-regulated kinase 1 and 2 (p-ERK1/2) in injured nerve. S100 immunoreactivity in injured nerve was detected by immunohistochemistry. In vivo experiments showed that 3 and 6 mg/kg AKBA significantly increased sciatic nerve index, Cuadros index of triceps muscle, p-ERK1/2 expression, and S100 immunoreactivity in injured sciatic nerve of sciatic nerve injury model rats. Furthermore,for in vitro experiments, Schwann cells were treated with AKBA at 0–20 μg/mL. Proliferation of Schwann cells was detected by Cell Counting Kit-8 colorimetry assay. The results showed that 2 μg/mL AKBA is the optimal therapeutic concentration. In addition, ERK phosphorylation levels increased following 2 μg/mL AKBA treatment. In the presence of the ERK1/2 inhibitor, PD98059 (2.5 μL/mL), the AKBA-induced increase in p-ERK1/2 protein expression was partially abrogated. In conclusion, our study shows that AKBA promotes peripheral nerve regeneration with ERK protein phosphorylation playing a key role in this process.展开更多
The kinetics of esterification of 2-keto-L-gulonic acid with methanol in the liquid phase catalyzed by cation exchange resin, D001, was studied. The experiments were carried out in a stirred batch reactor at 318, 323,...The kinetics of esterification of 2-keto-L-gulonic acid with methanol in the liquid phase catalyzed by cation exchange resin, D001, was studied. The experiments were carried out in a stirred batch reactor at 318, 323, 328, 333, 338, 341 K under atmospheric pressure. It is found that the speed of rotating rate has no effect on the esterification rate in the range of 300-500 r/min and the effect of internal mass transfer resistance is not obvious. The effects of temperature and catalyst loading on the reaction rate were researched under the condition of eliminating the effect of diffusion. The rate was found to increase with the increase of the temperature and catalyst loading. The experimental data were correlated with a kinetic model based on the pseudo-homogeneous catalysis. The kinetic equation for describing the reaction catalyzed by cation exchange resin was developed. The experimental data are in good agreement with the model.展开更多
A yeast strain R6 was obtained by the method of thiamine(VB1) auxotrophic negative selection from the edible oil-polluted soil in Zibo, China. Physiological and biochemical experiments revealed that strain R6 shared...A yeast strain R6 was obtained by the method of thiamine(VB1) auxotrophic negative selection from the edible oil-polluted soil in Zibo, China. Physiological and biochemical experiments revealed that strain R6 shared common feature with Rhodotorula mucilaginosa according to the API 20 C AUX yeast identification system which has been tested previously. Furthermore, the 18 S r DNA gene of strain R6 was amplified and sequenced. Phylogenetic analysis based on the 18 S r DNA sequence and the relatives indicated that R6 shared 99% homologies with the members of R. mucilaginosa, suggesting that strain R6 belonged to R. mucilaginosa.Investigation showed that strain R6 possessed the capacity of accumulating exocellular alpha-ketoglutaric acid(alpha-KG). Finally, the fermentation conditions of R6 to accumulate alpha-KG was optimized by controlling each single fermenting variable and detected through high performance liquid chromatography(HPLC). Results showed that both VB1 and Ca CO3 in fermentation medium were the key factors influencing the cumulant of alpha-KG. The discovery of natural auxotrophic strain R6 not only broadened the microbial resource which can achieve lots of alpha-KG production through fermentation, but also laid a foundation for further fermentation regulation to achieve excessive alpha-KG accumulation.展开更多
BACKGROUND Gastric cancer is one of the most common malignant tumors of the digestive system worldwide,posing a serious danger to human health.Cyclooxygenase(COX)-2 plays an important role in the carcinogenesis and pr...BACKGROUND Gastric cancer is one of the most common malignant tumors of the digestive system worldwide,posing a serious danger to human health.Cyclooxygenase(COX)-2 plays an important role in the carcinogenesis and progression of gastric cancer.Acetyl-11-keto-β-boswellic acid(AKBA)is a promising drug for cancer therapy,but its effects and mechanism of action on human gastric cancer remain unclear.AIM To evaluate whether the phosphatase and tensin homolog(PTEN)/Akt/COX-2 signaling pathway is involved in the anti-tumor effect of AKBA in gastric cancer.METHODS Human poorly differentiated BGC823 and moderately differentiated SGC7901 gastric cancer cells were routinely cultured in Roswell Park Memorial Institute 1640 medium supplemented with 10%fetal bovine serum and 1%penicillin/streptomycin.Gastric cancer cell proliferation was determined by methyl thiazolyl tetrazolium colorimetric assay.Apoptosis was measured by flow cytometry.Cell migration was assessed using the wound-healing assay.Expression of Bcl-2,Bax,proliferating cell nuclear antigen,PTEN,p-Akt,and COX-2 were detected by Western blot analysis.A xenograft nude mouse model of human gastric cancer was established to evaluate the anti-cancer effect of AKBA RESULTS AKBA significantly inhibited the proliferation of gastric cancer cells in a dose-and time-dependent manner,inhibited migration in a time-dependent manner,and induced apoptosis in a dose-dependent manner in vitro;it also inhibited tumor growth in vivo.AKBA up-regulated the expression of PTEN and Bax,and downregulated the expression of proliferating cell nuclear antigen,Bcl-2,p-Akt,and COX-2 in a dose-dependent manner.The PTEN inhibitor bpv(Hopic)reversed the high expression of PTEN and low expression of p-Akt and COX-2 that were induced by AKBA.The Akt inhibitor MK2206 combined with AKBA downregulated the expression of p-Akt and COX-2,and the combined effect was better than that of AKBA alone.CONCLUSION AKBA inhibits the proliferation and migration and promotes the apoptosis of gastric cancer cells through the PTEN/Akt/COX-2 signaling pathway.展开更多
L-Amino acid deaminase(LAAD) is a key enzyme in the deamination of L-valine(L-val) to produce α-ketoisovalerate(KIV). However, the product inhibition of LAAD is a major hindrance to industrial KIV production.In the p...L-Amino acid deaminase(LAAD) is a key enzyme in the deamination of L-valine(L-val) to produce α-ketoisovalerate(KIV). However, the product inhibition of LAAD is a major hindrance to industrial KIV production.In the present study, a combination strategy of modification of flexible loop regions around the product binding site and the avoidance of dramatic change of main-chain dynamics was reported to reduce the product inhibition.The four mutant PM-LAAD^(M4)(PM-LAAD^(S98A/T105A/S106A/L341A)) achieved a 6.2-fold higher catalytic efficiency and an almost 6.7-fold reduction in product inhibition than the wild-type enzyme. Docking experiments suggested that weakened interactions between the product and enzyme, and the flexibility of the "lid" structure relieved LAAD product inhibition. Finally, the whole-cell biocatalyst PM-LAAD^(M4) has been applied to KIV production,the titer and conversion rate of KIV from L-val were 98.5 g·L^-1 and 99.2% at a 3-L scale, respectively. These results demonstrate that the newly engineered catalyst can significantly reduce the product inhibition, that making KIV a prospective product by bioconversion method, and also provide the understanding of the mechanism of the relieved product inhibition of PM-LAAD.展开更多
High current findings indicate that a substitution with pyruvate can lead to significant alterations or even improvement in neutrophil immunonutrition. However, it is still unknown which intra-cellular pathways might ...High current findings indicate that a substitution with pyruvate can lead to significant alterations or even improvement in neutrophil immunonutrition. However, it is still unknown which intra-cellular pathways might be involved here. Hence, in this study, we investigated whether preincu-bation with an inhibitor of ·NO-synthase (L-NAME), an ·NO donor (SNAP), an analogue of taurine (beta-alanine), an inhibitor of ornithine-decarboxylase (DFMO) as well as a glutamine-analogue (DON), is able to alter the intragranulocytic metabolic response to pyruvate, here for example studied for neutrophil intracellular amino- and α-keto acid concentrations or important neutrophil immune functions [released myeloperoxidase (MPO), the formation of superoxide anions O2- and hydrogen peroxide (H2O2)]. In summary, the interesting first results presented here showed, that any damage of specific metabolic pathways or mechanisms, which seem directly or indirectly to be involved in relevant pyruvate dependent granulocytic nutrient content or specific cellular tasks, could lead to therapeutically desired, but also to unexpected or even fatal consequences for the affected cells. We therefore continue to believe that pyruvate, irrespective of which exact biochemical mechanisms were involved, in neutrophils may satisfy the substantial metabolic demands for a potent intracellular nutrient.展开更多
The proper recycling of spent lithium-ion batteries(LIBs)can promote the recovery and utilization of valuable resources,while also negative environmental effects resulting from the presence of toxic and hazardous subs...The proper recycling of spent lithium-ion batteries(LIBs)can promote the recovery and utilization of valuable resources,while also negative environmental effects resulting from the presence of toxic and hazardous substances.In this study,a new environmentally friendly hydro-metallurgical process was proposed for leaching lithium(Li),nickel(Ni),cobalt(Co),and manganese(Mn)from spent LIBs using sulfuric acid with citric acid as a reductant.The effects of the concentration of sulfuric acid,the leaching temperature,the leaching time,the solid-liquid ratio,and the reducing agent dosage on the leaching behavior of the above elements were investigated.Key parameters were optimized using response surface methodology(RSM)to maximize the recovery of metals from spent LIBs.The maxim-um recovery efficiencies of Li,Ni,Co,and Mn can reach 99.08%,98.76%,98.33%,and 97.63%.under the optimized conditions(the sulfuric acid concentration was 1.16 mol/L,the citric acid dosage was 15wt%,the solid-liquid ratio was 40 g/L,and the temperature was 83℃ for 120 min),respectively.It was found that in the collaborative leaching process of sulfuric acid and citric acid,the citric acid initially provided strong reducing CO_(2)^(-),and the transition metal ions in the high state underwent a reduction reaction to produce transition metal ions in the low state.Additionally,citric acid can also act as a proton donor and chelate with lower-priced transition metal ions,thus speeding up the dissolution process.展开更多
In this study,the structural characters,antioxidant activities and bile acid-binding ability of sea buckthorn polysaccharides(HRPs)obtained by the commonly used hot water(HRP-W),pressurized hot water(HRP-H),ultrasonic...In this study,the structural characters,antioxidant activities and bile acid-binding ability of sea buckthorn polysaccharides(HRPs)obtained by the commonly used hot water(HRP-W),pressurized hot water(HRP-H),ultrasonic(HRP-U),acid(HRP-C)and alkali(HRP-A)assisted extraction methods were investigated.The results demonstrated that extraction methods had significant effects on extraction yield,monosaccharide composition,molecular weight,particle size,triple-helical structure,and surface morphology of HRPs except for the major linkage bands.Thermogravimetric analysis showed that HRP-U with filamentous reticular microstructure exhibited better thermal stability.The HRP-A with the lowest molecular weight and highest arabinose content possessed the best antioxidant activities.Moreover,the rheological analysis indicated that HRPs with higher galacturonic acid content and molecular weight showed higher viscosity and stronger crosslinking network(HRP-C,HRP-W and HRP-U),which exhibited stronger bile acid binding capacity.The present findings provide scientific evidence in the preparation technology of sea buckthorn polysaccharides with good antioxidant and bile acid binding capacity which are related to the structure affected by the extraction methods.展开更多
文摘Objective:To investigate the effects of tripterygium glycosides combined with compoundα-ketoacid tablets on inflammatory response, oxidative stress and urinary TGF-β1 and IV-C levels in patients with chronic renal failure.Methods: 102 patients with chronic renal failure admitted to Shuguang hospital from January 2017 to June 2018 were randomly divided into observation group (51 cases) and control group (51 cases). In the control group, the tripterygium glycosides tablets were orally administered, and the observation group was orally administered with tripterygium glycosides tablets and compoundα-keto acid tablets. The inflammatory response, oxidative stress index and urinary TGF-β1, IV-C levels were compared between the two groups.Results: There was no significant difference in CRP and TNF-α levels between the two groups before treatment (P>0.05). After treatment, the levels of CRP and TNF-α in the observation group were (9.32±1.10) mg/L and (3.14±0.36) ng/L, respectively, and the levels of CRP and TNF-α in the control group were (15.34±1.31) mg/ L, (5.01±0.53) ng / L. The CRP and TNF-α levels in the two groups were lower than those before treatment, and the CRP and TNF-α in the observation group were significantly lower than those in the control group (P<0.05). Before treatment, there was no significant difference in MDA, SOD and GSH-PX levels between the two groups (P>0.05). After treatment, the MDA level of the observation group was (3.01±0.32) μmol/L, and the MDA level of the control group was (5.17±0.61) μmol/L. The MDA of the two groups was lower than that before treatment, and the MDA of the observation group was significantly lower than that of the control group (P<0.05). After treatment, the levels of SOD and GSH-PX in the observation group were (101.45±13.16) U/L and (94.83±7.17) U/L, respectively. The levels of SOD and GSH-PX in the control group were (88.87±12.05) U/L, (87.38 ± 6.32) U/L. The SOD and GSH-PX of the two groups were higher than those before treatment, and the SOD and GSH-PX of the observation group were significantly higher than the control group (P<0.05). Before treatment, there was no significant difference in TGF-β1 and IV-C levels between the two groups (P>0.05). After treatment, the levels of TGF-β1 and IV-C in the observation group were (1.05±0.24) ng/L and (5.05±1.13) μg/L, respectively, and the levels of TGF-β1 and IV-C in the control group were (1.36±, respectively). 0.26) ng/L, (7.07±1.24) μg/L. The levels of TGF-β1 and IV-C in the two groups were lower than those before treatment, and the TGF-β1 and IV-C in the observation group were significantly lower than those in the control group (P<0.05).Conclusion: Tripterygium glycosides combined with compound -keto acid tablets can effectively reduce the inflammatory response, oxidative stress and renal interstitial fibrosis in patients with chronic renal failure.
基金Supported by the Natural Science Foundation of Shandong Province,China(No.ZR2023MA069)the Medical and Health Technology Development Project of Shandong Province,China(No.202202050602)+1 种基金College Students’Innovation and Entrepreneurship Training Program(No.S202410438017)the Graduate Student Research Grant from Shandong Second Medical University.
文摘AIM:To investigate the molecular mechanisms underlying the influence of hypoxia and alpha-ketoglutaric acid(α-KG)on scleral collagen expression.METHODS:Meta-analysis and clinical statistics were used to prove the changes in choroidal thickness(ChT)during myopia.The establishment of a hypoxic myopia model(HYP)for rabbit scleral fibroblasts through hypoxic culture and the effects of hypoxia andα-KG on collagen expression were demonstrated by Sirius red staining.Transcriptome analysis was used to verify the genes and pathways that hypoxia andα-KG affect collagen expression.Finally,real-time quantitative reverse transcription polymerase chain reaction(RT-qPCR)was used for reverse verification.RESULTS:Meta-analysis results aligned with clinical statistics,revealing a thinning of ChT,leading to scleral hypoxia.Sirius red staining indicated lower collagen expression in the HYP group and higher collagen expression in the HYP+α-KG group,showed that hypoxia reduced collagen expression in scleral fibroblasts,whileα-KG can elevated collagen expression under HYP conditions.Transcriptome analysis unveiled the related genes and signaling pathways of hypoxia andα-KG affect scleral collagen expression and the results were verified by RT-qPCR.CONCLUSION:The potential molecular mechanisms through which hypoxia andα-KG influencing myopia is unraveled and three novel genes TLCD4,TBC1D4,and EPHX3 are identified.These findings provide a new perspective on the prevention and treatment of myopia via regulating collagen expression.
基金supported by a grant from the French Society of Sleep Research and Medicine(to LS)The China Scholarship Council(to HL)The CNRS,INSERM,Claude Bernard University Lyon1(to LS)。
文摘The sleep-wake cycle stands as an integrative process essential for sustaining optimal brain function and,either directly or indirectly,overall body health,encompassing metabolic and cardiovascular well-being.Given the heightened metabolic activity of the brain,there exists a considerable demand for nutrients in comparison to other organs.Among these,the branched-chain amino acids,comprising leucine,isoleucine,and valine,display distinctive significance,from their contribution to protein structure to their involvement in overall metabolism,especially in cerebral processes.Among the first amino acids that are released into circulation post-food intake,branched-chain amino acids assume a pivotal role in the regulation of protein synthesis,modulating insulin secretion and the amino acid sensing pathway of target of rapamycin.Branched-chain amino acids are key players in influencing the brain's uptake of monoamine precursors,competing for a shared transporter.Beyond their involvement in protein synthesis,these amino acids contribute to the metabolic cycles ofγ-aminobutyric acid and glutamate,as well as energy metabolism.Notably,they impact GABAergic neurons and the excitation/inhibition balance.The rhythmicity of branchedchain amino acids in plasma concentrations,observed over a 24-hour cycle and conserved in rodent models,is under circadian clock control.The mechanisms underlying those rhythms and the physiological consequences of their disruption are not fully understood.Disturbed sleep,obesity,diabetes,and cardiovascular diseases can elevate branched-chain amino acid concentrations or modify their oscillatory dynamics.The mechanisms driving these effects are currently the focal point of ongoing research efforts,since normalizing branched-chain amino acid levels has the ability to alleviate the severity of these pathologies.In this context,the Drosophila model,though underutilized,holds promise in shedding new light on these mechanisms.Initial findings indicate its potential to introduce novel concepts,particularly in elucidating the intricate connections between the circadian clock,sleep/wake,and metabolism.Consequently,the use and transport of branched-chain amino acids emerge as critical components and orchestrators in the web of interactions across multiple organs throughout the sleep/wake cycle.They could represent one of the so far elusive mechanisms connecting sleep patterns to metabolic and cardiovascular health,paving the way for potential therapeutic interventions.
基金supported by the National Natural Science Foundation of China,Nos.32371070 (to JT),31761163005 (to JT),32100824 (to QX)the Shenzhen Science and Technology Program,Nos.RCBS20210609104606024 (to QX),JCY20210324101813035 (to DL)+4 种基金the Guangdong Provincial Key S&T Program,No.2018B030336001 (to JT)the Key Basic Research Program of Shenzhen Science and Technology Innovation Commission,Nos.JCYJ20200109115405930 (to JT),JCYJ20220818101615033 (to DL),JCYJ20210324115811031 (to QX),JCYJ20200109150717745 (to QX)Shenzhen Key Laboratory of Neuroimmunomodulation for Neurological Diseases,No.ZDSYS20220304163558001 (to JT)Guangdong Provincial Key Laboratory of Brain Connectome and Behavior,No.2023B1212060055 (to JT)the China Postdoctoral Science Foundation,No.2021M693298 (to QX)。
文摘The conventional perception of astrocytes as mere supportive cells within the brain has recently been called into question by empirical evidence, which has revealed their active involvement in regulating brain function and encoding behaviors associated with emotions.Specifically, astrocytes in the basolateral amygdala have been found to play a role in the modulation of anxiety-like behaviors triggered by chronic stress. Nevertheless, the precise molecular mechanisms by which basolateral amygdala astrocytes regulate chronic stress–induced anxiety-like behaviors remain to be fully elucidated. In this study, we found that in a mouse model of anxiety triggered by unpredictable chronic mild stress, the expression of excitatory amino acid transporter 2 was upregulated in the basolateral amygdala. Interestingly, our findings indicate that the targeted knockdown of excitatory amino acid transporter 2 specifically within the basolateral amygdala astrocytes was able to rescue the anxiety-like behavior in mice subjected to stress. Furthermore, we found that the overexpression of excitatory amino acid transporter 2 in the basolateral amygdala, whether achieved through intracranial administration of excitatory amino acid transporter 2agonists or through injection of excitatory amino acid transporter 2-overexpressing viruses with GfaABC1D promoters, evoked anxiety-like behavior in mice. Our single-nucleus RNA sequencing analysis further confirmed that chronic stress induced an upregulation of excitatory amino acid transporter 2 specifically in astrocytes in the basolateral amygdala. Moreover, through in vivo calcium signal recordings, we found that the frequency of calcium activity in the basolateral amygdala of mice subjected to chronic stress was higher compared with normal mice.After knocking down the expression of excitatory amino acid transporter 2 in the basolateral amygdala, the frequency of calcium activity was not significantly increased, and anxiety-like behavior was obviously mitigated. Additionally, administration of an excitatory amino acid transporter 2 inhibitor in the basolateral amygdala yielded a notable reduction in anxiety level among mice subjected to stress. These results suggest that basolateral amygdala astrocytic excitatory amino acid transporter 2 plays a role in in the regulation of unpredictable chronic mild stress-induced anxiety-like behavior by impacting the activity of local glutamatergic neurons, and targeting excitatory amino acid transporter 2 in the basolateral amygdala holds therapeutic promise for addressing anxiety disorders.
基金supported by MICIU(grant number PID2021-128133NB-100/AEI/FEDER10.13039/501100011033 to JMHG)by the National Institutes of Health(grant number R01 NS083858 to SAK)+1 种基金the Intramural Grants Program IGPP00057(to SAK)VIC enjoys a FPU contract from the Comunidad de Madrid(PIPF-2022/SAL-GL-25948)。
文摘The involvement of the excitatory amino acids glutamate and aspartate in ce rebral ischemia and excitotoxicity is well-documented.Nevertheless,the role of non-excitatory amino acids in brain damage following a stroke or brain trauma remains largely understudied.The release of amino acids by necrotic cells in the ischemic core may contribute to the expansion of the penumbra.Our findings indicated that the reversible loss of field excitato ry postsynaptic potentials caused by transient hypoxia became irreversible when exposed to a mixture of just four non-excitatory amino acids(L-alanine,glycine,L-glutamine,and L-serine)at their plasma concentrations.These amino acids induce swelling in the somas of neurons and astrocytes during hypoxia,along with permanent dendritic damage mediated by N-methyl-D-aspartate receptors.Blocking N-methyl-D-aspartate receptors prevented neuronal damage in the presence of these amino acids during hypoxia.It is likely that astroglial swelling caused by the accumulation of these amino acids via the alanine-serine-cysteine transporter 2 exchanger and system N transporters activates volume-regulated anion channels,leading to the release of excitotoxins and subsequent neuronal damage through N-methyl-D-aspartate receptor activation.Thus,previously unrecognized mechanisms involving non-excitatory amino acids may contribute to the progression and expansion of brain injury in neurological emergencies such as stroke and traumatic brain injury.Understanding these pathways co uld highlight new therapeutic targets to mitigate brain injury.
基金Supported by Romanian Ministry of Research,Innovation and Digitization,No.PN23.16.02.04 and No.31PFE/30.12.2021.
文摘BACKGROUND Pancreatic ductal adenocarcinoma(PDAC)is an aggressive lethal malignancy with limited options for treatment and a 5-year survival rate of 11%in the United States.As for other types of tumors,such as colorectal cancer,aberrant de novo lipid synthesis and reprogrammed lipid metabolism have been suggested to be associated with PDAC development and progression.AIM To identify the possible involvement of lipid metabolism in PDAC by analyzing in tumoral and non-tumoral tissues the expression level of the most relevant genes involved in the long-chain fatty acid(FA)import into cell.METHODS A gene expression analysis of FASN,CD36,SLC27A1,SLC27A2,SLC27A3,SLC27A4,SLC27A5,ACSL1,and ACSL3 was performed by qRT-PCR in 24 tumoral PDAC tissues and 11 samples from non-tumoral pancreatic tissues obtained via fine needle aspiration or via surgical resection.The genes were considered significantly dysregulated between the groups when the p value was<0.05 and the fold change(FC)was≤0.5 and≥2.RESULTS We found that three FA transporters and two long-chain acyl-CoA synthetases genes were significantly upregulated in the PDAC tissue compared to the non-tumoral tissue:SLC27A2(FC=5.66;P=0.033),SLC27A3(FC=2.68;P=0.040),SLC27A4(FC=3.13;P=0.033),ACSL1(FC=4.10;P<0.001),and ACSL3(FC=2.67;P=0.012).We further investigated any possible association between the levels of the analyzed mRNAs and the specific characteristics of the tumors,including the anatomic location,the lymph node involvement,and the presence of metastasis.A significant difference in the expression of SLC27A3(FC=3.28;P=0.040)was found comparing patients with and without lymph nodes involvement with an overexpression of this transcript in 17 patients presenting tumoral cells in the lymph nodes.CONCLUSION Despite the low number of patients analyzed,these preliminary results seem to be promising.Addressing lipid metabolism through a broad strategy could be a beneficial way to treat this malignancy.Future in vitro and in vivo studies on these genes may offer important insights into the mechanisms linking PDAC with the long-chain FA import pathway.
基金supported by funding from Parkinson Canadafunded by a scholarship from Parkinson Canadaa scholarship from Fonds d’Enseignement et de Recherche (FER) (Faculty of Pharmacy, Université Laval)
文摘There is a need to develop interventions to slow or reverse the degeneration of dopamine neurons in Parkinson’s disease after diagnosis.Given that preclinical and clinical studies suggest benefits of dietary n-3 polyunsaturated fatty acids,such as docosahexaenoic acid,and exercise in Parkinson’s disease,we investigated whether both could synergistically interact to induce recovery of the dopaminergic pathway.First,mice received a unilateral stereotactic injection of 6-hydroxydopamine into the striatum to establish an animal model of nigrostriatal denervation.Four weeks after lesion,animals were fed a docosahexaenoic acid-enriched or a control diet for the next 8 weeks.During this period,the animals had access to a running wheel,which they could use or not.Docosahexaenoic acid treatment,voluntary exercise,or the combination of both had no effect on(i)distance traveled in the open field test,(ii)the percentage of contraversive rotations in the apomorphine-induction test or(iii)the number of tyrosine-hydroxylase-positive cells in the substantia nigra pars compacta.However,the docosahexaenoic acid diet increased the number of tyrosine-hydroxylase-positive terminals and induced a rise in dopamine concentrations in the lesioned striatum.Compared to docosahexaenoic acid treatment or exercise alone,the combination of docosahexaenoic acid and exercise(i)improved forelimb balance in the stepping test,(ii)decreased the striatal DOPAC/dopamine ratio and(iii)led to increased dopamine transporter levels in the lesioned striatum.The present results suggest that the combination of exercise and docosahexaenoic acid may act synergistically in the striatum of mice with a unilateral lesion of the dopaminergic system and provide support for clinical trials combining nutrition and physical exercise in the treatment of Parkinson’s disease.
基金supported by the Natural Science Foundation of Jiangsu Province of China,No.BK20211348(to SHQ)Xuzhou Basic Research Program,No.KC21030(to LYH)+1 种基金Leadership Program of Xuzhou Medical University,No.JBGS202203(to SHQ)Research Grant Council GRF of Hong Kong Special Administrative Region of China,No.17105220(to JGS)。
文摘It has been shown clinically that continuous removal of ischemia/reperfusion-induced reactive oxygen species is not conducive to the recovery of late stroke.Indeed,previous studies have shown that excessive increases in hypochlorous acid after stroke can cause severe damage to brain tissue.Our previous studies have found that a small amount of hypochlorous acid still exists in the later stage of stroke,but its specific role and mechanism are currently unclear.To simulate stroke in vivo,a middle cerebral artery occlusion rat model was established,with an oxygen-glucose deprivation/reoxygenation model established in vitro to mimic stroke.We found that in the early stage(within 24 hours)of ischemic stroke,neutrophils produced a large amount of hypochlorous acid,while in the recovery phase(10 days after stroke),microglia were activated and produced a small amount of hypochlorous acid.Further,in acute stroke in rats,hypochlorous acid production was prevented using a hypochlorous acid scavenger,taurine,or myeloperoxidase inhibitor,4-aminobenzoic acid hydrazide.Our results showed that high levels of hypochlorous acid(200μM)induced neuronal apoptosis after oxygen/glucose deprivation/reoxygenation.However,in the recovery phase of the middle cerebral artery occlusion model,a moderate level of hypochlorous acid promoted the proliferation and differentiation of neural stem cells into neurons and astrocytes.This suggests that hypochlorous acid plays different roles at different phases of cerebral ischemia/reperfusion injury.Lower levels of hypochlorous acid(5 and 100μM)promoted nuclear translocation ofβ-catenin.By transfection of single-site mutation plasmids,we found that hypochlorous acid induced chlorination of theβ-catenin tyrosine 30 residue,which promoted nuclear translocation.Altogether,our study indicates that maintaining low levels of hypochlorous acid plays a key role in the recovery of neurological function.
基金supported by the National Natural Science Foundation of China,No.82201582(to QT)Scientific and Technological Research Program of Chongqing Municipal Education Commission,No.KJQN202200457(to QT)+3 种基金General Project of Changqing Natural Science Foundation,No.cstc2021jcyjmsxmX0442(to ZL)CQMU Program for Youth Innovation in Future Medicine,No.W0044(to ZD and GH)Direct Research Project for PhD of Chongqing,No.CSTB2022BSXM-JCX0051(to ZL)the Project of the Top-Notch Talent Cultivation Program For the Graduate Students of Chongqing Medical University,No.BJRC202310(to CG)。
文摘Recent studies have suggested that abnormal acidification of lysosomes induces autophagic accumulation of amyloid-βin neurons,which is a key step in senile plaque formation.Therefore,resto ring normal lysosomal function and rebalancing lysosomal acidification in neurons in the brain may be a new treatment strategy for Alzheimer's disease.Microtubule acetylation/deacetylation plays a central role in lysosomal acidification.Here,we show that inhibiting the classic microtubule deacetylase histone deacetylase 6 with an histone deacetylase 6 shRNA or thehistone deacetylase 6 inhibitor valproic acid promoted lysosomal reacidification by modulating V-ATPase assembly in Alzheimer's disease.Fu rthermore,we found that treatment with valproic acid markedly enhanced autophagy.promoted clearance of amyloid-βaggregates,and ameliorated cognitive deficits in a mouse model of Alzheimer's disease.Our findings demonstrate a previously unknown neuroprotective mechanism in Alzheimer's disease,in which histone deacetylase 6 inhibition by valproic acid increases V-ATPase assembly and lysosomal acidification.
基金supported by the National Natural Science Foundation of China,Nos.82272171(to ZY),82271403(to XL),81941011(to XL),31971279(to ZY),31730030(to XL)the Natural Science Foundation of Beijing,No.7222004(to HD).
文摘The presence of endogenous neural stem/progenitor cells in the adult mammalian brain suggests that the central nervous system can be repaired and regenerated after injury.However,whether it is possible to stimulate neurogenesis and reconstruct cortical layers II to VI in non-neurogenic regions,such as the cortex,remains unknown.In this study,we implanted a hyaluronic acid collagen gel loaded with basic fibroblast growth factor into the motor cortex immediately following traumatic injury.Our findings reveal that this gel effectively stimulated the proliferation and migration of endogenous neural stem/progenitor cells,as well as their differentiation into mature and functionally integrated neurons.Importantly,these new neurons reconstructed the architecture of cortical layers II to VI,integrated into the existing neural circuitry,and ultimately led to improved brain function.These findings offer novel insight into potential clinical treatments for traumatic cerebral cortex injuries.
基金supported by the National Natural Science Foundation of China(No.31972197).
文摘Lactococcus lactis is an important food-grade microorganism that has been successfully applied as a starter to increase the level of 3-methylbutanal produced during the ripening of cheese.Three variants of branched-chain α-keto acid decarboxylase (KADC) were discovered in L.lactis strains with different 3-methylbutanal production abilities.Three genes encoding KADCs of varying lengths (KADC-long,KADC-middle,and KADC-short) were cloned and heterologously expressed into Escherichia coli.KADC activity was only detected in the E.coli cloned with the KADC-long-encoding gene.Homology modeling of the three KADC recombination proteins showed that an active-site residue (Glu462) and an S-pocket structure were necessary for the ability to catalyze substrates.KADC-long showed maximum activity at pH 7.0 and 30 ℃.The substrate hydrolysis and kinetic parameters demonstrated that KADC-long efficiently produces 2-methylbutanal and 3-methylbutanal.The heterologous expression of the full-length kdcA in low-3-methylbutanal-yield L.lactis strains increased their production yields.The results of this study demonstrate the function of the complete KADC in 3-methylbutanal production.
基金the National Natural Science Foundation of China(No.21702113)the Thousand Talents Plan of Central PlainsBeijing Municipal Education Committee Project(No.KM202110005006)。
文摘As a kind of environmentally benign reagents,α-keto acids have been extensively employed as key starting materials in organic synthesis.Organic electrosynthesis has the advantages of reducing byproduct generation,improving the cost-efficiency of synthetic processes,and accessing reactive intermediates under mild conditions.Inspired by the merits of organic electrosynthesis,α-keto acids have shown many synthetic applications in electrochemical acylation,cyclization,and reductive amination reactions with improved efficiencies and selectivities.This review covers the recent breakthroughs achieved in the electrochemical transformations ofα-keto acids,aimed at highlighting these electrochemical reactions’features and mechanistic rationalisations.Meanwhile,the practicalities and limitations of these transformations are also presented where possible.
文摘Frankincense can promote blood circulation. Acetyl-11-keto-β-boswellic acid (AKBA) is a small molecule with anti-inflammatory properties that is derived from Boswellia serrata. Here, we hypothesized that it may promote regeneration of injured sciatic nerve. To address this hypothesis, we established a rat model of sciatic nerve injury using a nerve clamping method. Rats were administered AKBA once every 2 days at doses of 1.5, 3, and 6 mg/kg by intraperitoneal injection for 30 days from the 1st day after injury. Sciatic nerve function was evaluated using the sciatic functional index. Degree of muscle atrophy was measured using the triceps surae muscle Cuadros index.Neuropathological changes were observed by hematoxylin-eosin staining. Western blot analysis was used to detect expression of phospho-extracellular signal-regulated kinase 1 and 2 (p-ERK1/2) in injured nerve. S100 immunoreactivity in injured nerve was detected by immunohistochemistry. In vivo experiments showed that 3 and 6 mg/kg AKBA significantly increased sciatic nerve index, Cuadros index of triceps muscle, p-ERK1/2 expression, and S100 immunoreactivity in injured sciatic nerve of sciatic nerve injury model rats. Furthermore,for in vitro experiments, Schwann cells were treated with AKBA at 0–20 μg/mL. Proliferation of Schwann cells was detected by Cell Counting Kit-8 colorimetry assay. The results showed that 2 μg/mL AKBA is the optimal therapeutic concentration. In addition, ERK phosphorylation levels increased following 2 μg/mL AKBA treatment. In the presence of the ERK1/2 inhibitor, PD98059 (2.5 μL/mL), the AKBA-induced increase in p-ERK1/2 protein expression was partially abrogated. In conclusion, our study shows that AKBA promotes peripheral nerve regeneration with ERK protein phosphorylation playing a key role in this process.
文摘The kinetics of esterification of 2-keto-L-gulonic acid with methanol in the liquid phase catalyzed by cation exchange resin, D001, was studied. The experiments were carried out in a stirred batch reactor at 318, 323, 328, 333, 338, 341 K under atmospheric pressure. It is found that the speed of rotating rate has no effect on the esterification rate in the range of 300-500 r/min and the effect of internal mass transfer resistance is not obvious. The effects of temperature and catalyst loading on the reaction rate were researched under the condition of eliminating the effect of diffusion. The rate was found to increase with the increase of the temperature and catalyst loading. The experimental data were correlated with a kinetic model based on the pseudo-homogeneous catalysis. The kinetic equation for describing the reaction catalyzed by cation exchange resin was developed. The experimental data are in good agreement with the model.
基金Supported by the Natural Science Foundation of Shandong Province,China(ZR2010CQ017)Program of Young Teachers Development of Shandong University of Technology~~
文摘A yeast strain R6 was obtained by the method of thiamine(VB1) auxotrophic negative selection from the edible oil-polluted soil in Zibo, China. Physiological and biochemical experiments revealed that strain R6 shared common feature with Rhodotorula mucilaginosa according to the API 20 C AUX yeast identification system which has been tested previously. Furthermore, the 18 S r DNA gene of strain R6 was amplified and sequenced. Phylogenetic analysis based on the 18 S r DNA sequence and the relatives indicated that R6 shared 99% homologies with the members of R. mucilaginosa, suggesting that strain R6 belonged to R. mucilaginosa.Investigation showed that strain R6 possessed the capacity of accumulating exocellular alpha-ketoglutaric acid(alpha-KG). Finally, the fermentation conditions of R6 to accumulate alpha-KG was optimized by controlling each single fermenting variable and detected through high performance liquid chromatography(HPLC). Results showed that both VB1 and Ca CO3 in fermentation medium were the key factors influencing the cumulant of alpha-KG. The discovery of natural auxotrophic strain R6 not only broadened the microbial resource which can achieve lots of alpha-KG production through fermentation, but also laid a foundation for further fermentation regulation to achieve excessive alpha-KG accumulation.
基金Supported by the Natural Science Foundation of Jiangsu,No.BK20171508。
文摘BACKGROUND Gastric cancer is one of the most common malignant tumors of the digestive system worldwide,posing a serious danger to human health.Cyclooxygenase(COX)-2 plays an important role in the carcinogenesis and progression of gastric cancer.Acetyl-11-keto-β-boswellic acid(AKBA)is a promising drug for cancer therapy,but its effects and mechanism of action on human gastric cancer remain unclear.AIM To evaluate whether the phosphatase and tensin homolog(PTEN)/Akt/COX-2 signaling pathway is involved in the anti-tumor effect of AKBA in gastric cancer.METHODS Human poorly differentiated BGC823 and moderately differentiated SGC7901 gastric cancer cells were routinely cultured in Roswell Park Memorial Institute 1640 medium supplemented with 10%fetal bovine serum and 1%penicillin/streptomycin.Gastric cancer cell proliferation was determined by methyl thiazolyl tetrazolium colorimetric assay.Apoptosis was measured by flow cytometry.Cell migration was assessed using the wound-healing assay.Expression of Bcl-2,Bax,proliferating cell nuclear antigen,PTEN,p-Akt,and COX-2 were detected by Western blot analysis.A xenograft nude mouse model of human gastric cancer was established to evaluate the anti-cancer effect of AKBA RESULTS AKBA significantly inhibited the proliferation of gastric cancer cells in a dose-and time-dependent manner,inhibited migration in a time-dependent manner,and induced apoptosis in a dose-dependent manner in vitro;it also inhibited tumor growth in vivo.AKBA up-regulated the expression of PTEN and Bax,and downregulated the expression of proliferating cell nuclear antigen,Bcl-2,p-Akt,and COX-2 in a dose-dependent manner.The PTEN inhibitor bpv(Hopic)reversed the high expression of PTEN and low expression of p-Akt and COX-2 that were induced by AKBA.The Akt inhibitor MK2206 combined with AKBA downregulated the expression of p-Akt and COX-2,and the combined effect was better than that of AKBA alone.CONCLUSION AKBA inhibits the proliferation and migration and promotes the apoptosis of gastric cancer cells through the PTEN/Akt/COX-2 signaling pathway.
基金financially supported by the national first-class discipline program of Light Industry Technology and Engineering(LITE201820)the Key Technologies Research and Development Program of Jiangsu Province(BE2018623)。
文摘L-Amino acid deaminase(LAAD) is a key enzyme in the deamination of L-valine(L-val) to produce α-ketoisovalerate(KIV). However, the product inhibition of LAAD is a major hindrance to industrial KIV production.In the present study, a combination strategy of modification of flexible loop regions around the product binding site and the avoidance of dramatic change of main-chain dynamics was reported to reduce the product inhibition.The four mutant PM-LAAD^(M4)(PM-LAAD^(S98A/T105A/S106A/L341A)) achieved a 6.2-fold higher catalytic efficiency and an almost 6.7-fold reduction in product inhibition than the wild-type enzyme. Docking experiments suggested that weakened interactions between the product and enzyme, and the flexibility of the "lid" structure relieved LAAD product inhibition. Finally, the whole-cell biocatalyst PM-LAAD^(M4) has been applied to KIV production,the titer and conversion rate of KIV from L-val were 98.5 g·L^-1 and 99.2% at a 3-L scale, respectively. These results demonstrate that the newly engineered catalyst can significantly reduce the product inhibition, that making KIV a prospective product by bioconversion method, and also provide the understanding of the mechanism of the relieved product inhibition of PM-LAAD.
文摘High current findings indicate that a substitution with pyruvate can lead to significant alterations or even improvement in neutrophil immunonutrition. However, it is still unknown which intra-cellular pathways might be involved here. Hence, in this study, we investigated whether preincu-bation with an inhibitor of ·NO-synthase (L-NAME), an ·NO donor (SNAP), an analogue of taurine (beta-alanine), an inhibitor of ornithine-decarboxylase (DFMO) as well as a glutamine-analogue (DON), is able to alter the intragranulocytic metabolic response to pyruvate, here for example studied for neutrophil intracellular amino- and α-keto acid concentrations or important neutrophil immune functions [released myeloperoxidase (MPO), the formation of superoxide anions O2- and hydrogen peroxide (H2O2)]. In summary, the interesting first results presented here showed, that any damage of specific metabolic pathways or mechanisms, which seem directly or indirectly to be involved in relevant pyruvate dependent granulocytic nutrient content or specific cellular tasks, could lead to therapeutically desired, but also to unexpected or even fatal consequences for the affected cells. We therefore continue to believe that pyruvate, irrespective of which exact biochemical mechanisms were involved, in neutrophils may satisfy the substantial metabolic demands for a potent intracellular nutrient.
基金supported by Key R&D Program of Zhejiang Province,China (No.2022C03061)the National Natural Science Foundation of China (No.52074204)the Fundamental Research Funds for the Central Universities (No.2023-vb-032).
文摘The proper recycling of spent lithium-ion batteries(LIBs)can promote the recovery and utilization of valuable resources,while also negative environmental effects resulting from the presence of toxic and hazardous substances.In this study,a new environmentally friendly hydro-metallurgical process was proposed for leaching lithium(Li),nickel(Ni),cobalt(Co),and manganese(Mn)from spent LIBs using sulfuric acid with citric acid as a reductant.The effects of the concentration of sulfuric acid,the leaching temperature,the leaching time,the solid-liquid ratio,and the reducing agent dosage on the leaching behavior of the above elements were investigated.Key parameters were optimized using response surface methodology(RSM)to maximize the recovery of metals from spent LIBs.The maxim-um recovery efficiencies of Li,Ni,Co,and Mn can reach 99.08%,98.76%,98.33%,and 97.63%.under the optimized conditions(the sulfuric acid concentration was 1.16 mol/L,the citric acid dosage was 15wt%,the solid-liquid ratio was 40 g/L,and the temperature was 83℃ for 120 min),respectively.It was found that in the collaborative leaching process of sulfuric acid and citric acid,the citric acid initially provided strong reducing CO_(2)^(-),and the transition metal ions in the high state underwent a reduction reaction to produce transition metal ions in the low state.Additionally,citric acid can also act as a proton donor and chelate with lower-priced transition metal ions,thus speeding up the dissolution process.
基金The Guangdong Basic and Applied Basic Research Foundation(2022A1515010730)National Natural Science Foundation of China(32001647)+2 种基金National Natural Science Foundation of China(31972022)Financial and moral assistance supported by the Guangdong Basic and Applied Basic Research Foundation(2019A1515011996)111 Project(B17018)。
文摘In this study,the structural characters,antioxidant activities and bile acid-binding ability of sea buckthorn polysaccharides(HRPs)obtained by the commonly used hot water(HRP-W),pressurized hot water(HRP-H),ultrasonic(HRP-U),acid(HRP-C)and alkali(HRP-A)assisted extraction methods were investigated.The results demonstrated that extraction methods had significant effects on extraction yield,monosaccharide composition,molecular weight,particle size,triple-helical structure,and surface morphology of HRPs except for the major linkage bands.Thermogravimetric analysis showed that HRP-U with filamentous reticular microstructure exhibited better thermal stability.The HRP-A with the lowest molecular weight and highest arabinose content possessed the best antioxidant activities.Moreover,the rheological analysis indicated that HRPs with higher galacturonic acid content and molecular weight showed higher viscosity and stronger crosslinking network(HRP-C,HRP-W and HRP-U),which exhibited stronger bile acid binding capacity.The present findings provide scientific evidence in the preparation technology of sea buckthorn polysaccharides with good antioxidant and bile acid binding capacity which are related to the structure affected by the extraction methods.