L-Amino acid deaminase(LAAD) is a key enzyme in the deamination of L-valine(L-val) to produce α-ketoisovalerate(KIV). However, the product inhibition of LAAD is a major hindrance to industrial KIV production.In the p...L-Amino acid deaminase(LAAD) is a key enzyme in the deamination of L-valine(L-val) to produce α-ketoisovalerate(KIV). However, the product inhibition of LAAD is a major hindrance to industrial KIV production.In the present study, a combination strategy of modification of flexible loop regions around the product binding site and the avoidance of dramatic change of main-chain dynamics was reported to reduce the product inhibition.The four mutant PM-LAAD^(M4)(PM-LAAD^(S98A/T105A/S106A/L341A)) achieved a 6.2-fold higher catalytic efficiency and an almost 6.7-fold reduction in product inhibition than the wild-type enzyme. Docking experiments suggested that weakened interactions between the product and enzyme, and the flexibility of the "lid" structure relieved LAAD product inhibition. Finally, the whole-cell biocatalyst PM-LAAD^(M4) has been applied to KIV production,the titer and conversion rate of KIV from L-val were 98.5 g·L^-1 and 99.2% at a 3-L scale, respectively. These results demonstrate that the newly engineered catalyst can significantly reduce the product inhibition, that making KIV a prospective product by bioconversion method, and also provide the understanding of the mechanism of the relieved product inhibition of PM-LAAD.展开更多
基金financially supported by the national first-class discipline program of Light Industry Technology and Engineering(LITE201820)the Key Technologies Research and Development Program of Jiangsu Province(BE2018623)。
文摘L-Amino acid deaminase(LAAD) is a key enzyme in the deamination of L-valine(L-val) to produce α-ketoisovalerate(KIV). However, the product inhibition of LAAD is a major hindrance to industrial KIV production.In the present study, a combination strategy of modification of flexible loop regions around the product binding site and the avoidance of dramatic change of main-chain dynamics was reported to reduce the product inhibition.The four mutant PM-LAAD^(M4)(PM-LAAD^(S98A/T105A/S106A/L341A)) achieved a 6.2-fold higher catalytic efficiency and an almost 6.7-fold reduction in product inhibition than the wild-type enzyme. Docking experiments suggested that weakened interactions between the product and enzyme, and the flexibility of the "lid" structure relieved LAAD product inhibition. Finally, the whole-cell biocatalyst PM-LAAD^(M4) has been applied to KIV production,the titer and conversion rate of KIV from L-val were 98.5 g·L^-1 and 99.2% at a 3-L scale, respectively. These results demonstrate that the newly engineered catalyst can significantly reduce the product inhibition, that making KIV a prospective product by bioconversion method, and also provide the understanding of the mechanism of the relieved product inhibition of PM-LAAD.