α-Linolenic acid(ALA,18:3Δ9,12,15)is an essential fatty acid for humans since it is the precursor for the biosynthesis of omega-3 long-chain polyunsaturated fatty acids(LC-PUFA).Modern people generally suffer from d...α-Linolenic acid(ALA,18:3Δ9,12,15)is an essential fatty acid for humans since it is the precursor for the biosynthesis of omega-3 long-chain polyunsaturated fatty acids(LC-PUFA).Modern people generally suffer from deficiency of ALA because most staple food oils are low or lack ALA content.Biotechnological enrichment of ALA in staple oil crops is a promising strategy.Chia(Salvia hispanica)has the highest ALA content in its seed oil among known oil crops.In this study,the FAD2 and FAD3 genes from chia were engineered into a staple oil crop,oilseed rape(Brassica napus),via Agrobaterium tumefaciens-mediated transformation of their LP4-2A fusion gene construct driven by the seed-specific promoter P_(NapA).In seeds of T0,T1,and T2 lines,the average ALA contents were 20.86,23.54,and 24.92%,respectively,which were 2.21,2.68,and 3.03 folds of the non-transformed controls(9.42,8.78,and 8.22%),respectively.The highest seed ALA levels of T0,T1,and T2 plants were 38.41,35.98,and 39.19%respectively,which were 4.10-4.77 folds of the respective controls.FA-pathway enzyme genes(BnACCD,BnFATA,BnSAD,BnSCD,BnDGAT1,BnDGAT2,and BnDGAT3)and positive regulatory genes(BnWRI1,BnLEC1,BnL1L,BnLEC2,BnABI3,BnbZIP67,and BnMYB96)were all significantly up-regulated.In contrast,BnTT1,BnTT2,BnTT8,BnTT16,BnTTG1,and BnTTG2,encoding negative oil accumulation regulators but positive secondary metabolism regulators,were all significantly down-regulated.This means the foreign ShFAD2-ShFAD3 fusion gene,directly and indirectly,remodeled both positive and negative loci of the whole FA-related network in transgenic B.napus seeds.展开更多
A novel class ofα-linolenic acid-in-water microemulsion free of co-surfactant was investigated as potential food delivery systems.Rough demarcation within the transparent region was deduced from the results of conduc...A novel class ofα-linolenic acid-in-water microemulsion free of co-surfactant was investigated as potential food delivery systems.Rough demarcation within the transparent region was deduced from the results of conductivity and polarizing optical microscopy.The microemulsion mean hydrodynamic diameter and characterization were determined by dynamic light scattering and negative-staining TEM.The location of ALA molecules in the microemulsion formulations was determined by ~1H NMR spectroscopy.展开更多
Aluminum has been associated with neurodegenerative diseases.ALA(α-linolenic acid),an essential dietary component for human health,possesses prominent biological activities.Herein,we aim to explore the neuroprotectiv...Aluminum has been associated with neurodegenerative diseases.ALA(α-linolenic acid),an essential dietary component for human health,possesses prominent biological activities.Herein,we aim to explore the neuroprotective effects of ALA on aluminum toxicity and reveal the underlying mechanism.Results show that aluminum chloride(denoted as Al)enabled cell viability decline and apoptosis with oxidative stress and mitochondrial damage in differentiated rat pheochromocytoma cells(PC12)for 24 h incubation.Compared with Al(10 mmol/L)treatment alone,ALA(50μmol/L)pretreatment for 24 h significantly enhanced cell viability by 28.40%,and hindered cell apoptosis by 12.35%,together with recovering redox state balance and alleviating mitochondrial damage.It was measured that ALA treatment upregulated Bcl-2 expression and down-regulated Bax level,accompanied with an expression decline of caspase-3 and caspase-9.Meanwhile,ALA pretreatment was proved to increase protein kinase A(PKA)expression and to promote phosphorylation of cAMP response element-binding protein(p-CREB),resulting in elevation on the level of brain-derived neurotrophic factor(BDNF).The above results showed that ALA attenuated Al toxicity in PC12 cells by mediating the PKA-CREBBDNF signaling pathway.展开更多
Background:In ruminants,dietary C18:3n-3 can be lost through biohydrogenation in the rumen;and C18:3n-3 that by-passes the rumen still can be lost through oxidation in muscle,theoretically reducing the deposition of C...Background:In ruminants,dietary C18:3n-3 can be lost through biohydrogenation in the rumen;and C18:3n-3 that by-passes the rumen still can be lost through oxidation in muscle,theoretically reducing the deposition of C18:3n-3,the substrate for synthesis of poly-unsaturated fatty acids(n-3 LCPUFA)in muscle.In vitro studies have shown that rumen hydrogenation of C18:3n-3 is reduced by supplementation with palm oil(rich in cis-9 C18:1).In addition,in hepatocytes,studies with neonatal rats have shown that cis-9 C18:1 inhibits the oxidation of C18:3n-3.It therefore seems likely that palm oil could reduce both rumen biohydrogenation of C18:3n-3 and muscle oxidation of C18:3n-3.The present experiment tested whether the addition of palm oil to a linseed oil supplement for goat kids would prevent the losses of C18:3n-3 and thus improve the FA composition in two muscles,Longissimus dorsi and Biceps femoris.To investigate the processes involved,we studied the rumen bacterial communities and measured the mRNA expression of genes related to lipid metabolism in Longissimus dorsi.Sixty 4-month-old castrated male Albas white cashmere kids were randomly allocated among three dietary treatments.All three diets contained the same ingredients in the same proportions,but differed in their fat additives:palm oil(PMO),linseed oil(LSO)or mixed oil(MIX;2 parts linseed oil plus 1 part palm oil on a weight basis).Results:Compared with the LSO diet,the MIX diet decreased the relative abuandance of Pseudobutyrivibrio,a bacterial species that is positively related to the proportional loss rate of dietary C18:3n-3 and that has been reported to generate the ATP required for biohydrogenation(reflecting a decrease in the abundance of rumen bacteria that hydrogenate C18:3n-3 in MIX kids).In muscle,the MIX diet increased concentrations of C18:3n-3,C20:5n-3,C22:6n-3,and n-3 LCPUFA,and thus decreased the n-6/n-3 ratio;decreased the mRNA expression of CPT1β(a gene associated with fatty acid oxidation)and increased the mRNA expression of FADS1 and FADS2(genes associated with n-3 LCPUFA synthesis),compared with the LSO diet.Interestingly,compared to Longissimus dorsi,Biceps femoris had greater concentrations of PUFA,greater ratios of unsaturated fatty acids/saturated fatty acids(U/S),and poly-unsaturated fatty acids/saturated fatty acids(P/S),but a lesser concentration of saturated fatty acids(SFA).Conclusions:In cashmere goat kids,a combination of linseed and palm oils in the diet increases the muscle concentration of n-3 LCPUFA,apparently by decreasing the relative abundance of rumen bacteria that are positively related to the proportional loss rate of dietary C18:3n-3,by inhibiting mRNA expression of genes related to C18:3n-3 oxidation in muscle,and by up-regulating mRNA expression of genes related to n-3 LCPUFA synthesis in muscle,especially in Longissimus dorsi.展开更多
In the present feeding trial,responses of laying hens that were kept at high ambient temperature and Fed with various dietary ratios of linoleic acid(LNA)toα-linolenic acid(ALA)and vitamin A levels on production perf...In the present feeding trial,responses of laying hens that were kept at high ambient temperature and Fed with various dietary ratios of linoleic acid(LNA)toα-linolenic acid(ALA)and vitamin A levels on production performance and egg quality traits were evaluated.A total of 360 Leghorn laying hens at 40th week of age(average initial body weight;1.79±0.23 kg)were fed with various combinations of canola oil and linseed oil containing diets to achieve LNA to ALA dietary ratios of 20:1,10:1,4:1,2:1,1:1 and 1:2,each supplemented with 3000 or 10000 IU of vitamin A/kg of diet.The experiment was designed as a 6×2 factorial Completely Randomized Design that continued for 12 weeks.Feed intake,body weight gain,egg production and egg quality traits were recorded during the trial.Decreasing dietary LNA to ALA ratio or increasing poly unsaturated fatty acids(PUFA)in the diet decreased(P<0.05)body weight gain and yolk percentage in laying hens.Feed intake,hen-day and hen-housed egg production,feed conversion ratio(FCR)per dozen of eggs and shell quality remained unaffected(P>0.05)by dietary treatments.Feed conversion ratio per kg eggs,egg weight and egg-shell thickness showed a curvilinear(P<0.05)response to decreasing dietary LNA to ALA ratio.Although the dietary ratio of LNA to ALA of 4:1 or less could produce eggs by the hens with desirable quantities of n-6 and n-3 PUFA–that are characteristics of functional diets–the performance of laying hens in terms of body weight gain and egg-yolk percentage was slightly compromised.Therefore,a 4:1 or 2:1 LNA to ALA combination can make a borderline between the production traits and the feed economics.展开更多
Iridovirus poses a substantial threat to global aquaculture due to its high mortality rate;however,the molecular mechanisms underpinning its pathogenesis are not well elucidated.Here,a multi-omics approach was applied...Iridovirus poses a substantial threat to global aquaculture due to its high mortality rate;however,the molecular mechanisms underpinning its pathogenesis are not well elucidated.Here,a multi-omics approach was applied to groupers infected with Singapore grouper iridovirus(SGIV),focusing on the roles of key metabolites.Results showed that SGIV induced obvious histopathological damage and changes in metabolic enzymes within the liver.Furthermore,SGIV significantly reduced the contents of lipid droplets,triglycerides,cholesterol,and lipoproteins.Metabolomic analysis indicated that the altered metabolites were enriched in 19 pathways,with a notable down-regulation of lipid metabolites such as glycerophosphates and alpha-linolenic acid(ALA),consistent with disturbed lipid homeostasis in the liver.Integration of transcriptomic and metabolomic data revealed that the top enriched pathways were related to cell growth and death and nucleotide,carbohydrate,amino acid,and lipid metabolism,supporting the conclusion that SGIV infection induced liver metabolic reprogramming.Further integrative transcriptomic and proteomic analysis indicated that SGIV infection activated crucial molecular events in a phagosome-immune depression-metabolism dysregulation-necrosis signaling cascade.Of note,integrative multi-omics analysis demonstrated the consumption of ALA and linoleic acid(LA)metabolites,and the accumulation of L-glutamic acid(GA),accompanied by alterations in immune,inflammation,and cell death-related genes.Further experimental data showed that ALA,but not GA,suppressed SGIV replication by activating antioxidant and anti-inflammatory responses in the host.Collectively,these findings provide a comprehensive resource for understanding host response dynamics during fish iridovirus infection and highlight the antiviral potential of ALA in the prevention and treatment of iridoviral diseases.展开更多
[Objective] The aim was to investigate the anti-inflammatory effect and the mechanism of gamma-linolenic acid on lipopolysaccharide-induced RAW264.7 cells.[Method] Macrophagic system RAW 264.7 cells were cultured in v...[Objective] The aim was to investigate the anti-inflammatory effect and the mechanism of gamma-linolenic acid on lipopolysaccharide-induced RAW264.7 cells.[Method] Macrophagic system RAW 264.7 cells were cultured in vitro,when cells grew to fusion state,they were pretreated with 0,12.5,25.0,50.0 μmol/L of GLA for 4 h,and then 100 ng/ml of LPS were added to induce for 12 h or 30 min.Meanwhile,the blank control and LPS control were set.And the expression of iNOS,COX-2 and the effect of GLA on IκBα,p-JNK/SAPK(Thr183/Tyr185),p38 MAPK,p-p38 MAPK(Thr180/Tyr182),ERK1/2,p-ERK1/2 were detected by Western blot.[Result] GLA significantly inhibited the expression of iNOS and COX-2 in RAW264.7 cells induced by LPS,and in the range of 0-50 μmol/L of GLA,the inhibition effect was concentration-dependent(P0.05).GLA could significantly inhibited the degradation of IκBα(P0.05),thereby inhibited the activation of NF-κB.GLA could significantly inhibited the phosphorylation of LPS-induced JNK1/2 and ERK1/2(P0.05),while it had not significantly effect on the phosphorylation of p38(P0.05).[Conclusion] GLA had excellent anti-inflammation effect.The inhibition of the phosphorylation of JNK1/2,ERK1/2 and the inhibition of activation of NF-κB might be the important mechanism for the educing of its biological effect.展开更多
Omega-3 polyunsaturated fatty acids(n-3 PUFAs),particularly docosahexaenoic acid(22:6n-3,DHA),play crucial roles in the reproductive health of vertebrates,including humans.Nevertheless,the underlying mechanism related...Omega-3 polyunsaturated fatty acids(n-3 PUFAs),particularly docosahexaenoic acid(22:6n-3,DHA),play crucial roles in the reproductive health of vertebrates,including humans.Nevertheless,the underlying mechanism related to this phenomenon remains largely unknown.In this study,we employed two zebrafish genetic models,i.e.,elovl2^(-/-)mutant as an endogenous DHAdeficient model and fat1(omega-3 desaturase encoding gene)transgenic zebrafish as an endogenous DHA-rich model,to investigate the effects of DHA on oocyte maturation and quality.Results show that the elovl2^(-/-)mutants had much lower fecundity and poorer oocyte quality than the wild-type controls,while the fat1 zebrafish had higher fecundity and better oocyte quality than wildtype controls.DHA deficiency in elovl2^(-/-)embryos led to defects in egg activation,poor microtubule stability,and reduced pregnenolone levels.Further study revealed that DHA promoted pregnenolone synthesis by enhancing transcription of cyp11a1,which encodes the cholesterol side-chain cleavage enzyme,thereby stabilizing microtubule assembly during oogenesis.In turn,the hypothalamic-pituitary-gonadal axis was enhanced by DHA.In conclusion,using two unique genetic models,our findings demonstrate that endogenously synthesized DHA promotes oocyte maturation and quality by promoting pregnenolone production via transcriptional regulation of cyp11a1.展开更多
In this study,the structural characters,antioxidant activities and bile acid-binding ability of sea buckthorn polysaccharides(HRPs)obtained by the commonly used hot water(HRP-W),pressurized hot water(HRP-H),ultrasonic...In this study,the structural characters,antioxidant activities and bile acid-binding ability of sea buckthorn polysaccharides(HRPs)obtained by the commonly used hot water(HRP-W),pressurized hot water(HRP-H),ultrasonic(HRP-U),acid(HRP-C)and alkali(HRP-A)assisted extraction methods were investigated.The results demonstrated that extraction methods had significant effects on extraction yield,monosaccharide composition,molecular weight,particle size,triple-helical structure,and surface morphology of HRPs except for the major linkage bands.Thermogravimetric analysis showed that HRP-U with filamentous reticular microstructure exhibited better thermal stability.The HRP-A with the lowest molecular weight and highest arabinose content possessed the best antioxidant activities.Moreover,the rheological analysis indicated that HRPs with higher galacturonic acid content and molecular weight showed higher viscosity and stronger crosslinking network(HRP-C,HRP-W and HRP-U),which exhibited stronger bile acid binding capacity.The present findings provide scientific evidence in the preparation technology of sea buckthorn polysaccharides with good antioxidant and bile acid binding capacity which are related to the structure affected by the extraction methods.展开更多
The increase in anthropogenic carbon dioxide(CO_(2))emissions has exacerbated the deterioration of the global environment,which should be controlled to achieve carbon neutrality.Central to the core goal of achieving c...The increase in anthropogenic carbon dioxide(CO_(2))emissions has exacerbated the deterioration of the global environment,which should be controlled to achieve carbon neutrality.Central to the core goal of achieving carbon neutrality is the utilization of CO_(2) under economic and sustainable conditions.Recently,the strong need for carbon neutrality has led to a proliferation of studies on the direct conversion of CO_(2) into carboxylic acids,which can effectively alleviate CO_(2) emissions and create high-value chemicals.The purpose of this review is to present the application prospects of carboxylic acids and the basic principles of CO_(2) conversion into carboxylic acids through photo-,electric-,and thermal catalysis.Special attention is focused on the regulation strategy of the activity of abundant catalysts at the molecular level,inspiring the preparation of high-performance catalysts.In addition,theoretical calculations,advanced technologies,and numerous typical examples are introduced to elaborate on the corresponding process and influencing factors of catalytic activity.Finally,challenges and prospects are provided for the future development of this field.It is hoped that this review will contribute to a deeper understanding of the conversion of CO_(2) into carboxylic acids and inspire more innovative breakthroughs.展开更多
Genetic modifi cation is useful for improving the nutritional qualities of cyanobacteria. To increase the total unsaturated fatty acid content, along with the ratio of ω-3/ω-6 fatty acids, genetic engineering can be...Genetic modifi cation is useful for improving the nutritional qualities of cyanobacteria. To increase the total unsaturated fatty acid content, along with the ratio of ω-3/ω-6 fatty acids, genetic engineering can be used to modify fatty acid metabolism. S ynechococcus sp. PCC7002, a fast-growing cyanobacterium, does not contain a Δ6 desaturase gene and is therefore unable to synthesize γ-linolenic acid(GLA) and stearidonic acid(SDA), which are important in human health. In this work, we constructed recombinant vectors Syd6 D, Syd15 D and Syd6Dd15 D to express the Δ15 desaturase and Δ6 desaturase genes from Synechocystis PCC6803 in Synechococcus sp. PCC7002, with the aim of expressing polyunsaturated fatty acids. Overexpression of the Δ15 desaturase gene in S ynechococcus resulted in 5.4 times greater accumulation of α-linolenic acid compared with the wild-type while Δ6 desaturase gene expression produced both GLA and SDA. Co-expression of the two genes resulted in low-level accumulation of GLA but much larger amounts of SDA, accounting for as much to 11.64% of the total fatty acid content.展开更多
Sweet osmanthus(Osmanthus fragrans) is a having general approval aromatic tree in China that is widely applied to landscaping and gardening. However, the evergreen tree adaptability is limited by many environmental st...Sweet osmanthus(Osmanthus fragrans) is a having general approval aromatic tree in China that is widely applied to landscaping and gardening. However, the evergreen tree adaptability is limited by many environmental stresses. Currently, limited information is available regarding the genetic analysis and functional identification of expansin genes in response to abiotic stress in sweet osmanthus. In this study, a total of 29 expansin genes were identified and divided into four groups by genome-wide analysis from the sweet osmanthus genome. Transcriptome and quantitative Real-time PCR analysis showed that the cell wall-localized protein expansin-like A(OfEXLA1) gene was significantly induced by salt and drought treatment. Histochemical GUS staining of transgenic Arabidopsis lines in which GUS activity was driven with the OfEXLA1 promoter, GUS activity was significantly induced by salt, drought, and exogenous abscisic acid(ABA). In yeast, we found OfEXLA1overexpression significantly improved the population of cells compared with wild-type strains after NaCl and polyethylene glycol(PEG)treatment. Additionally, OfEXLA1 overexpression not only promoted plant growth, but also improved the salt and drought tolerance in Arabidopsis. To gain insight into the role of ABA signaling in the regulation of OfEXLA1 improving abiotic tolerance in sweet osmanthus, four differentially expressed ABA Insensitive 5(ABI5)-like genes(OfABL4, OfABL5, OfABL7, and OfABL8) were identified from transcriptome, and dualluciferase(dual-LUC) and yeast one hybrid(Y1H) assay showed that OfABL4 and OfABL5 might bind to OfEXLA1 promoter to accumulate the OfEXLA1 expression by responding to ABA signaling to improve abiotic tolerance in sweet osmanthus. These results provide the information for understanding the molecular functions of expansin-like A gene and molecular breeding of sweet osmanthus in future.展开更多
Hepatocellular carcinoma(HCC)is a prevalent and aggressive liver malignancy.The interplay between bile acids(BAs)and the gut microbiota has emerged as a critical factor in HCC development and progression.Under normal ...Hepatocellular carcinoma(HCC)is a prevalent and aggressive liver malignancy.The interplay between bile acids(BAs)and the gut microbiota has emerged as a critical factor in HCC development and progression.Under normal conditions,BA metabolism is tightly regulated through a bidirectional interplay between gut microorganisms and BAs.The gut microbiota plays a critical role in BA metabolism,and BAs are endogenous signaling molecules that help maintain liver and intestinal homeostasis.Of note,dysbiotic changes in the gut microbiota during pathogenesis and cancer development can disrupt BA homeostasis,thereby leading to liver inflammation and fibrosis,and ultimately contributing to HCC development.Therefore,understanding the intricate interplay between BAs and the gut microbiota is crucial for elucidating the mechanisms underlying hepatocarcinogenesis.In this review,we comprehensively explore the roles and functions of BA metabolism,with a focus on the interactions between BAs and gut microorganisms in HCC.Additionally,therapeutic strategies targeting BA metabolism and the gut microbiota are discussed,including the use of BA agonists/antagonists,probiotic/prebiotic and dietary interventions,fecal microbiota transplantation,and engineered bacteria.In summary,understanding the complex BA-microbiota crosstalk can provide valuable insights into HCC development and facilitate the development of innovative therapeutic approaches for liver malignancy.展开更多
α-Glucosidase inhibitors are effective in controlling postprandial hyperglycemia,which play crucial roles in the management of type 2 diabetes.Protocatechuic acid(PCA)is one of phenolic acids existing not only in var...α-Glucosidase inhibitors are effective in controlling postprandial hyperglycemia,which play crucial roles in the management of type 2 diabetes.Protocatechuic acid(PCA)is one of phenolic acids existing not only in various plant foods but also as a major microbial metabolite of dietary anthocyanins in the large colon.The present study investigated the inhibitory mechanism of PCA on a-glucosidase in vitro and examined its effect on postprandial blood glucose levels in vivo.Results from in vitro experiments demonstrated that PCA was a mix-type inhibitor of a-glucosidase.Driven by hydrogen bonds and van der Waals interactions,PCA reversibly bound withα-glucosidase to form a stable a-glucosidase-PCA complex in a spontaneous manner.The computational simulation found that PCA could insert into the active cavity of a-glucosidase and establish hydrogen bonds with catalytic amino acid residues.PCA binding aroused the steric hindrance for substrates to enter active sites and caused the structural changes of interacted catalytic amino acid residues.PCA also exhibited postprandial hypoglycemic capacity in diabetic mice.This study may provide the theoretical basis for the application of PCA as an active ingredient of functional foods in dietary management of diabetes.展开更多
The juvenile-to-adult phase change with first flowering as the indicator plays a crucial role in the lifecycle of fruit trees. However, the molecular mechanisms underlying phase change in fruit trees remain largely un...The juvenile-to-adult phase change with first flowering as the indicator plays a crucial role in the lifecycle of fruit trees. However, the molecular mechanisms underlying phase change in fruit trees remain largely unknown. Shikimic acid (ShA) pathway is a main metabolic pathway closely related to the synthesis of hormones and many important secondary metabolites participating in plant phase change. So,whether ShA regulates phase change in plants is worth clarifying. Here, the distinct morphological characteristics and the underlying mechanisms of phase change in jujube (Ziziphus jujuba Mill.), an important fruit tree native to China with nutritious fruit and outstanding tolerance abiotic stresses, were clarified. A combined transcriptome and metabolome analysis found that ShA is positively involved in jujube(Yuhong’×Xing 16’) phase change. The genes in the upstream of ShA synthesis pathway (ZjDAHPS, ZjDHQS and ZjSDH), the contents of ShA and the downstream secondary metabolites like phenols were significantly upregulated in the phase change period. Further, the treatment of spraying exogenous ShA verified that ShA at a very low concentration (60 mg·L^(-1)) can substantially speed up the phase change and flowering of jujube and other tested plants including Arabidopsis, tomato and wheat. The exogenous ShA (60 mg·L^(-1)) treatment in jujube seedlings could increase the accumulation of endogenous ShA, enhance leaf photosynthesis and the synthesis of phenols especially flavonoids and phenolic acids, and promote the expression of genes (ZjCOs, ZjNFYs and ZjPHYs) involved in flowering pathway. Basing on above results, we put forward a propose for the underlying mechanism of ShA regulating phase change, and a hypothesis that ShA could be considered a phytohormone-like substance because it is endogenous, ubiquitous, movable and highly efficient at very low concentrations. This study highlights the critical role of ShA in plant phase change and its phytohormone-like properties.展开更多
AIM:To explore the correlation of gut microbiota and the metabolites with the progression of diabetic retinopathy(DR)and provide a novel strategy to elucidate the pathological mechanism of DR.METHODS:The fecal samples...AIM:To explore the correlation of gut microbiota and the metabolites with the progression of diabetic retinopathy(DR)and provide a novel strategy to elucidate the pathological mechanism of DR.METHODS:The fecal samples from 32 type 2 diabetes patients with proliferative retinopathy(PDR),23 with nonproliferative retinopathy(NPDR),27 without retinopathy(DM),and 29 from the sex-,age-and BMI-matched healthy controls(29 HC)were analyzed by 16S rDNA gene sequencing.Sixty fecal samples from PDR,DM,and HC groups were assayed by untargeted metabolomics.Fecal metabolites were measured using liquid chromatographymass spectrometry(LC-MS)analysis.Associations between gut microbiota and fecal metabolites were analyzed.RESULTS:A cluster of 2 microbiome and 12 metabolites accompanied with the severity of DR,and the close correlation of the disease progression with PDR-related microbiome and metabolites were found.To be specific,the structure of gut microbiota differed in four groups.Diversity and richness of gut microbiota were significantly lower in PDR and NPDR groups,than those in DM and HC groups.A cluster of microbiome enriched in PDR group,including Pseudomonas,Ruminococcaceae-UCG-002,Ruminococcaceae-UCG-005,Christensenellaceae-R-7,was observed.Functional analysis showed that the glucose and nicotinate degradations were significantly higher in PDR group than those in HC group.Arginine,serine,ornithine,and arachidonic acid were significantly enriched in PDR group,while proline was enriched in HC group.Functional analysis illustrated that arginine biosynthesis,lysine degradation,histidine catabolism,central carbon catabolism in cancer,D-arginine and D-ornithine catabolism were elevated in PDR group.Correlation analysis revealed that Ruminococcaceae-UCG-002 and Christensenellaceae-R-7 were positively associated with L-arginine,ornithine levels in fecal samples.CONCLUSION:This study elaborates the different microbiota structure in the gut from four groups.The relative abundance of Ruminococcaceae-UCG-002 and Parabacteroides are associated with the severity of DR.Amino acid and fatty acid catabolism is especially disordered in PDR group.This may help provide a novel diagnostic parameter for DR,especially PDR.展开更多
Elaidic acid(EA)stimulation can lead to endoplasmic reticulum stress(ERS),accompanied by a large release of Ca^(2+),and ultimately the activation of NLRP3 inflammasome in Kupffer cells(KCs).Mitochondrial instability o...Elaidic acid(EA)stimulation can lead to endoplasmic reticulum stress(ERS),accompanied by a large release of Ca^(2+),and ultimately the activation of NLRP3 inflammasome in Kupffer cells(KCs).Mitochondrial instability or dysfunction may be the key stimulating factors to activate NLRP3 inflammasome,and sustained Ca^(2+)transfer can result in mitochondrial dysfunction.We focused on KCs to explore the damage to mitochondria by EA.After EA stimulation,cells produced an oxidative stress(OS)response with a significant increase in ROS release.Immunoprecipitation experiments and the addition of inhibitors revealed that the increase in the level of intracellular Ca^(2+)led to Ca^(2+)accumulation in the mitochondrial matrix via mitochondria-associated membranes(MAMs).This was accompanied by a significant release of m ROS,loss of MMP and ATP,and a significant increase in mitochondrial permeability transition pore opening,ultimately leading to mitochondrial instability.These findings confirmed the mechanism that EA induced mitochondrial Ca^(2+)imbalance in KCs via MAM,ultimately leading to mitochondrial dysfunction.Meanwhile,EA induced OS and the decrease of MMP and ATP in rat liver,and significant lesions were found in liver mitochondria.Swelling of the inner mitochondrial cristae and mitochondrial vacuolization occurred,with a marked increase in lipid droplets.展开更多
The poor stability of RuO_(2)electrocatalysts has been the primary obstacles for their practical application in polymer electrolyte membrane electrolyzers.To dramatically enhance the durability of RuO_(2)to construct ...The poor stability of RuO_(2)electrocatalysts has been the primary obstacles for their practical application in polymer electrolyte membrane electrolyzers.To dramatically enhance the durability of RuO_(2)to construct activity-stability trade-off model is full of significance but challenging.Herein,a single atom Zn stabilized RuO_(2)with enriched oxygen vacancies(SA Zn-RuO_(2))is developed as a promising alternative to iridium oxide for acidic oxygen evolution reaction(OER).Compared with commercial RuO_(2),the enhanced Ru–O bond strength of SA Zn-RuO_(2)by forming Zn-O-Ru local structure motif is favorable to stabilize surface Ru,while the electrons transferred from Zn single atoms to adjacent Ru atoms protects the Ru active sites from overoxidation.Simultaneously,the optimized surrounding electronic structure of Ru sites in SA ZnRuO_(2)decreases the adsorption energies of OER intermediates to reduce the reaction barrier.As a result,the representative SA Zn-RuO_(2)exhibits a low overpotential of 210 mV to achieve 10 mA cm^(-2)and a greatly enhanced durability than commercial RuO_(2).This work provides a promising dual-engineering strategy by coupling single atom doping and vacancy for the tradeoff of high activity and catalytic stability toward acidic OER.展开更多
The significant demand for high quality food has motivated us to adopt appropriate processing methods to improve the food nutritional quality and flavors.In this study,the effects of five drying methods,namely,pulsed ...The significant demand for high quality food has motivated us to adopt appropriate processing methods to improve the food nutritional quality and flavors.In this study,the effects of five drying methods,namely,pulsed vacuum drying(PVD),freeze drying(FD),infrared drying(IRD),hot-air drying(HAD)and sun drying(SD)on free amino acids(FAAs),α-dicarbonyl compounds(α-DCs)and volatile compounds(VOCs)in rape bee pollen(RBP)were determined.The results showed that FD significantly released the essential amino acids(EAAs)compared with fresh samples while SD caused the highest loss.Glucosone was the dominantα-DCs in RBP and the highest loss was observed after PVD.Aldehydes were the dominant volatiles of RBP and SD samples contained more new volatile substances(especially aldehydes)than the other four drying methods.Comprehensively,FD and PVD would be potential methods to effectively reduce the quality deterioration of RBP in the drying process.展开更多
Free amino acid(FAA)is the important component of vinegar that infl uences quality perception and consumer acceptance.FAA is one of the major metabolites produced by microorganisms;however,the microbial metabolic netw...Free amino acid(FAA)is the important component of vinegar that infl uences quality perception and consumer acceptance.FAA is one of the major metabolites produced by microorganisms;however,the microbial metabolic network on FAA biosynthesis remains unclear.Through metagenomic analysis,this work aimed to elucidate the roles of microbes in FAA biosynthesis during Monascus rice vinegar fermentation.Taxonomic profiles from functional analyses showed 14 dominant genera with high contributions to the metabolism pathways.The metabolic network for FAA biosynthesis was then constructed,and the microbial distribution in different metabolic pathways was illuminated.The results revealed that 5 functional genera were closely involved in FAA biosynthesis.This study illuminated the metabolic roles of microorganisms in FAA biosynthesis and provided crucial insights into the functional attributes of microbiota in vinegar fermentation.展开更多
基金This work was supported by the National Natural Science Foundation of China(31871549,32001441 and 32272015)the Chongqing Research Program of Basic Research and Frontier Technology,China(cstc2015jcyjBX0143)+2 种基金the Fundamental Research Funds for the Central Universities,China(XDJK2020C038)the National Key R&D Program of China(2016YFD0100506)the Young Eagles Program of Chongqing Municipal Commission of Education,China(CY220219)。
文摘α-Linolenic acid(ALA,18:3Δ9,12,15)is an essential fatty acid for humans since it is the precursor for the biosynthesis of omega-3 long-chain polyunsaturated fatty acids(LC-PUFA).Modern people generally suffer from deficiency of ALA because most staple food oils are low or lack ALA content.Biotechnological enrichment of ALA in staple oil crops is a promising strategy.Chia(Salvia hispanica)has the highest ALA content in its seed oil among known oil crops.In this study,the FAD2 and FAD3 genes from chia were engineered into a staple oil crop,oilseed rape(Brassica napus),via Agrobaterium tumefaciens-mediated transformation of their LP4-2A fusion gene construct driven by the seed-specific promoter P_(NapA).In seeds of T0,T1,and T2 lines,the average ALA contents were 20.86,23.54,and 24.92%,respectively,which were 2.21,2.68,and 3.03 folds of the non-transformed controls(9.42,8.78,and 8.22%),respectively.The highest seed ALA levels of T0,T1,and T2 plants were 38.41,35.98,and 39.19%respectively,which were 4.10-4.77 folds of the respective controls.FA-pathway enzyme genes(BnACCD,BnFATA,BnSAD,BnSCD,BnDGAT1,BnDGAT2,and BnDGAT3)and positive regulatory genes(BnWRI1,BnLEC1,BnL1L,BnLEC2,BnABI3,BnbZIP67,and BnMYB96)were all significantly up-regulated.In contrast,BnTT1,BnTT2,BnTT8,BnTT16,BnTTG1,and BnTTG2,encoding negative oil accumulation regulators but positive secondary metabolism regulators,were all significantly down-regulated.This means the foreign ShFAD2-ShFAD3 fusion gene,directly and indirectly,remodeled both positive and negative loci of the whole FA-related network in transgenic B.napus seeds.
基金supported by National Natural Scientific Foundation of China(No.20676051)Major Project Regarding Scientific and Technological Development of Shanghai Municipal Science and Technology Commission (No.07DZ 19508)the Technology Standard Project of Shanghai Municipal Science and Technology Commission (No.07DZ05019).
文摘A novel class ofα-linolenic acid-in-water microemulsion free of co-surfactant was investigated as potential food delivery systems.Rough demarcation within the transparent region was deduced from the results of conductivity and polarizing optical microscopy.The microemulsion mean hydrodynamic diameter and characterization were determined by dynamic light scattering and negative-staining TEM.The location of ALA molecules in the microemulsion formulations was determined by ~1H NMR spectroscopy.
基金supported by the National Natural Science Foundation of China (31972041, 32101955)the China Agriculture Research System of MOF and MARA (CARS-12)+1 种基金the Agricultural Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences (CAASASTIP-2016-OCRI)the Key Scientific Research Projects of Hubei Province (2020BCA086)
文摘Aluminum has been associated with neurodegenerative diseases.ALA(α-linolenic acid),an essential dietary component for human health,possesses prominent biological activities.Herein,we aim to explore the neuroprotective effects of ALA on aluminum toxicity and reveal the underlying mechanism.Results show that aluminum chloride(denoted as Al)enabled cell viability decline and apoptosis with oxidative stress and mitochondrial damage in differentiated rat pheochromocytoma cells(PC12)for 24 h incubation.Compared with Al(10 mmol/L)treatment alone,ALA(50μmol/L)pretreatment for 24 h significantly enhanced cell viability by 28.40%,and hindered cell apoptosis by 12.35%,together with recovering redox state balance and alleviating mitochondrial damage.It was measured that ALA treatment upregulated Bcl-2 expression and down-regulated Bax level,accompanied with an expression decline of caspase-3 and caspase-9.Meanwhile,ALA pretreatment was proved to increase protein kinase A(PKA)expression and to promote phosphorylation of cAMP response element-binding protein(p-CREB),resulting in elevation on the level of brain-derived neurotrophic factor(BDNF).The above results showed that ALA attenuated Al toxicity in PC12 cells by mediating the PKA-CREBBDNF signaling pathway.
基金supported by the National Science Foundation of China(Project No.31760685)the National Key R&D Program of China(Project No.2017YFD0500504).
文摘Background:In ruminants,dietary C18:3n-3 can be lost through biohydrogenation in the rumen;and C18:3n-3 that by-passes the rumen still can be lost through oxidation in muscle,theoretically reducing the deposition of C18:3n-3,the substrate for synthesis of poly-unsaturated fatty acids(n-3 LCPUFA)in muscle.In vitro studies have shown that rumen hydrogenation of C18:3n-3 is reduced by supplementation with palm oil(rich in cis-9 C18:1).In addition,in hepatocytes,studies with neonatal rats have shown that cis-9 C18:1 inhibits the oxidation of C18:3n-3.It therefore seems likely that palm oil could reduce both rumen biohydrogenation of C18:3n-3 and muscle oxidation of C18:3n-3.The present experiment tested whether the addition of palm oil to a linseed oil supplement for goat kids would prevent the losses of C18:3n-3 and thus improve the FA composition in two muscles,Longissimus dorsi and Biceps femoris.To investigate the processes involved,we studied the rumen bacterial communities and measured the mRNA expression of genes related to lipid metabolism in Longissimus dorsi.Sixty 4-month-old castrated male Albas white cashmere kids were randomly allocated among three dietary treatments.All three diets contained the same ingredients in the same proportions,but differed in their fat additives:palm oil(PMO),linseed oil(LSO)or mixed oil(MIX;2 parts linseed oil plus 1 part palm oil on a weight basis).Results:Compared with the LSO diet,the MIX diet decreased the relative abuandance of Pseudobutyrivibrio,a bacterial species that is positively related to the proportional loss rate of dietary C18:3n-3 and that has been reported to generate the ATP required for biohydrogenation(reflecting a decrease in the abundance of rumen bacteria that hydrogenate C18:3n-3 in MIX kids).In muscle,the MIX diet increased concentrations of C18:3n-3,C20:5n-3,C22:6n-3,and n-3 LCPUFA,and thus decreased the n-6/n-3 ratio;decreased the mRNA expression of CPT1β(a gene associated with fatty acid oxidation)and increased the mRNA expression of FADS1 and FADS2(genes associated with n-3 LCPUFA synthesis),compared with the LSO diet.Interestingly,compared to Longissimus dorsi,Biceps femoris had greater concentrations of PUFA,greater ratios of unsaturated fatty acids/saturated fatty acids(U/S),and poly-unsaturated fatty acids/saturated fatty acids(P/S),but a lesser concentration of saturated fatty acids(SFA).Conclusions:In cashmere goat kids,a combination of linseed and palm oils in the diet increases the muscle concentration of n-3 LCPUFA,apparently by decreasing the relative abundance of rumen bacteria that are positively related to the proportional loss rate of dietary C18:3n-3,by inhibiting mRNA expression of genes related to C18:3n-3 oxidation in muscle,and by up-regulating mRNA expression of genes related to n-3 LCPUFA synthesis in muscle,especially in Longissimus dorsi.
文摘In the present feeding trial,responses of laying hens that were kept at high ambient temperature and Fed with various dietary ratios of linoleic acid(LNA)toα-linolenic acid(ALA)and vitamin A levels on production performance and egg quality traits were evaluated.A total of 360 Leghorn laying hens at 40th week of age(average initial body weight;1.79±0.23 kg)were fed with various combinations of canola oil and linseed oil containing diets to achieve LNA to ALA dietary ratios of 20:1,10:1,4:1,2:1,1:1 and 1:2,each supplemented with 3000 or 10000 IU of vitamin A/kg of diet.The experiment was designed as a 6×2 factorial Completely Randomized Design that continued for 12 weeks.Feed intake,body weight gain,egg production and egg quality traits were recorded during the trial.Decreasing dietary LNA to ALA ratio or increasing poly unsaturated fatty acids(PUFA)in the diet decreased(P<0.05)body weight gain and yolk percentage in laying hens.Feed intake,hen-day and hen-housed egg production,feed conversion ratio(FCR)per dozen of eggs and shell quality remained unaffected(P>0.05)by dietary treatments.Feed conversion ratio per kg eggs,egg weight and egg-shell thickness showed a curvilinear(P<0.05)response to decreasing dietary LNA to ALA ratio.Although the dietary ratio of LNA to ALA of 4:1 or less could produce eggs by the hens with desirable quantities of n-6 and n-3 PUFA–that are characteristics of functional diets–the performance of laying hens in terms of body weight gain and egg-yolk percentage was slightly compromised.Therefore,a 4:1 or 2:1 LNA to ALA combination can make a borderline between the production traits and the feed economics.
基金supported by the National Natural Science Foundation of China(31930115,32173007)China Agriculture Research System of MOF and MARA(CARS-47-G16)Basic and Applied Basic Research Foundation of Guangdong Province(2022A1515010595)。
文摘Iridovirus poses a substantial threat to global aquaculture due to its high mortality rate;however,the molecular mechanisms underpinning its pathogenesis are not well elucidated.Here,a multi-omics approach was applied to groupers infected with Singapore grouper iridovirus(SGIV),focusing on the roles of key metabolites.Results showed that SGIV induced obvious histopathological damage and changes in metabolic enzymes within the liver.Furthermore,SGIV significantly reduced the contents of lipid droplets,triglycerides,cholesterol,and lipoproteins.Metabolomic analysis indicated that the altered metabolites were enriched in 19 pathways,with a notable down-regulation of lipid metabolites such as glycerophosphates and alpha-linolenic acid(ALA),consistent with disturbed lipid homeostasis in the liver.Integration of transcriptomic and metabolomic data revealed that the top enriched pathways were related to cell growth and death and nucleotide,carbohydrate,amino acid,and lipid metabolism,supporting the conclusion that SGIV infection induced liver metabolic reprogramming.Further integrative transcriptomic and proteomic analysis indicated that SGIV infection activated crucial molecular events in a phagosome-immune depression-metabolism dysregulation-necrosis signaling cascade.Of note,integrative multi-omics analysis demonstrated the consumption of ALA and linoleic acid(LA)metabolites,and the accumulation of L-glutamic acid(GA),accompanied by alterations in immune,inflammation,and cell death-related genes.Further experimental data showed that ALA,but not GA,suppressed SGIV replication by activating antioxidant and anti-inflammatory responses in the host.Collectively,these findings provide a comprehensive resource for understanding host response dynamics during fish iridovirus infection and highlight the antiviral potential of ALA in the prevention and treatment of iridoviral diseases.
文摘[Objective] The aim was to investigate the anti-inflammatory effect and the mechanism of gamma-linolenic acid on lipopolysaccharide-induced RAW264.7 cells.[Method] Macrophagic system RAW 264.7 cells were cultured in vitro,when cells grew to fusion state,they were pretreated with 0,12.5,25.0,50.0 μmol/L of GLA for 4 h,and then 100 ng/ml of LPS were added to induce for 12 h or 30 min.Meanwhile,the blank control and LPS control were set.And the expression of iNOS,COX-2 and the effect of GLA on IκBα,p-JNK/SAPK(Thr183/Tyr185),p38 MAPK,p-p38 MAPK(Thr180/Tyr182),ERK1/2,p-ERK1/2 were detected by Western blot.[Result] GLA significantly inhibited the expression of iNOS and COX-2 in RAW264.7 cells induced by LPS,and in the range of 0-50 μmol/L of GLA,the inhibition effect was concentration-dependent(P0.05).GLA could significantly inhibited the degradation of IκBα(P0.05),thereby inhibited the activation of NF-κB.GLA could significantly inhibited the phosphorylation of LPS-induced JNK1/2 and ERK1/2(P0.05),while it had not significantly effect on the phosphorylation of p38(P0.05).[Conclusion] GLA had excellent anti-inflammation effect.The inhibition of the phosphorylation of JNK1/2,ERK1/2 and the inhibition of activation of NF-κB might be the important mechanism for the educing of its biological effect.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Precision Seed Design and Breeding,XDA24010108)National Natural Science Foundation of China(31972780&31721005)+1 种基金National Key R&D Program of China(2018YFA0801000)State Key Laboratory of Freshwater Ecology and Biotechnology(2019FBZ05)。
文摘Omega-3 polyunsaturated fatty acids(n-3 PUFAs),particularly docosahexaenoic acid(22:6n-3,DHA),play crucial roles in the reproductive health of vertebrates,including humans.Nevertheless,the underlying mechanism related to this phenomenon remains largely unknown.In this study,we employed two zebrafish genetic models,i.e.,elovl2^(-/-)mutant as an endogenous DHAdeficient model and fat1(omega-3 desaturase encoding gene)transgenic zebrafish as an endogenous DHA-rich model,to investigate the effects of DHA on oocyte maturation and quality.Results show that the elovl2^(-/-)mutants had much lower fecundity and poorer oocyte quality than the wild-type controls,while the fat1 zebrafish had higher fecundity and better oocyte quality than wildtype controls.DHA deficiency in elovl2^(-/-)embryos led to defects in egg activation,poor microtubule stability,and reduced pregnenolone levels.Further study revealed that DHA promoted pregnenolone synthesis by enhancing transcription of cyp11a1,which encodes the cholesterol side-chain cleavage enzyme,thereby stabilizing microtubule assembly during oogenesis.In turn,the hypothalamic-pituitary-gonadal axis was enhanced by DHA.In conclusion,using two unique genetic models,our findings demonstrate that endogenously synthesized DHA promotes oocyte maturation and quality by promoting pregnenolone production via transcriptional regulation of cyp11a1.
基金The Guangdong Basic and Applied Basic Research Foundation(2022A1515010730)National Natural Science Foundation of China(32001647)+2 种基金National Natural Science Foundation of China(31972022)Financial and moral assistance supported by the Guangdong Basic and Applied Basic Research Foundation(2019A1515011996)111 Project(B17018)。
文摘In this study,the structural characters,antioxidant activities and bile acid-binding ability of sea buckthorn polysaccharides(HRPs)obtained by the commonly used hot water(HRP-W),pressurized hot water(HRP-H),ultrasonic(HRP-U),acid(HRP-C)and alkali(HRP-A)assisted extraction methods were investigated.The results demonstrated that extraction methods had significant effects on extraction yield,monosaccharide composition,molecular weight,particle size,triple-helical structure,and surface morphology of HRPs except for the major linkage bands.Thermogravimetric analysis showed that HRP-U with filamentous reticular microstructure exhibited better thermal stability.The HRP-A with the lowest molecular weight and highest arabinose content possessed the best antioxidant activities.Moreover,the rheological analysis indicated that HRPs with higher galacturonic acid content and molecular weight showed higher viscosity and stronger crosslinking network(HRP-C,HRP-W and HRP-U),which exhibited stronger bile acid binding capacity.The present findings provide scientific evidence in the preparation technology of sea buckthorn polysaccharides with good antioxidant and bile acid binding capacity which are related to the structure affected by the extraction methods.
基金financial support from the King Abdullah University of Science and Technology(KAUST).
文摘The increase in anthropogenic carbon dioxide(CO_(2))emissions has exacerbated the deterioration of the global environment,which should be controlled to achieve carbon neutrality.Central to the core goal of achieving carbon neutrality is the utilization of CO_(2) under economic and sustainable conditions.Recently,the strong need for carbon neutrality has led to a proliferation of studies on the direct conversion of CO_(2) into carboxylic acids,which can effectively alleviate CO_(2) emissions and create high-value chemicals.The purpose of this review is to present the application prospects of carboxylic acids and the basic principles of CO_(2) conversion into carboxylic acids through photo-,electric-,and thermal catalysis.Special attention is focused on the regulation strategy of the activity of abundant catalysts at the molecular level,inspiring the preparation of high-performance catalysts.In addition,theoretical calculations,advanced technologies,and numerous typical examples are introduced to elaborate on the corresponding process and influencing factors of catalytic activity.Finally,challenges and prospects are provided for the future development of this field.It is hoped that this review will contribute to a deeper understanding of the conversion of CO_(2) into carboxylic acids and inspire more innovative breakthroughs.
基金Supported by the International S&T Cooperation Program of China(No.2012DFA30450)the National Natural Science Foundation of China(No.30871541)+1 种基金the Taishan Scholar Foundation of Shandong Province(No.tshw20091014)the Innovation Program of the University Institutes of Jinan,Shandong Province(No.201004044)
文摘Genetic modifi cation is useful for improving the nutritional qualities of cyanobacteria. To increase the total unsaturated fatty acid content, along with the ratio of ω-3/ω-6 fatty acids, genetic engineering can be used to modify fatty acid metabolism. S ynechococcus sp. PCC7002, a fast-growing cyanobacterium, does not contain a Δ6 desaturase gene and is therefore unable to synthesize γ-linolenic acid(GLA) and stearidonic acid(SDA), which are important in human health. In this work, we constructed recombinant vectors Syd6 D, Syd15 D and Syd6Dd15 D to express the Δ15 desaturase and Δ6 desaturase genes from Synechocystis PCC6803 in Synechococcus sp. PCC7002, with the aim of expressing polyunsaturated fatty acids. Overexpression of the Δ15 desaturase gene in S ynechococcus resulted in 5.4 times greater accumulation of α-linolenic acid compared with the wild-type while Δ6 desaturase gene expression produced both GLA and SDA. Co-expression of the two genes resulted in low-level accumulation of GLA but much larger amounts of SDA, accounting for as much to 11.64% of the total fatty acid content.
基金supported by the National Natural Science Foundation of China (Grant Nos.31902057 and 32072615)Zhejiang Provincial Natural Science Foundation of China (Grant No.LQ19C160012)the key research and development program of Zhejiang Province (Grant No.2021C02071)。
文摘Sweet osmanthus(Osmanthus fragrans) is a having general approval aromatic tree in China that is widely applied to landscaping and gardening. However, the evergreen tree adaptability is limited by many environmental stresses. Currently, limited information is available regarding the genetic analysis and functional identification of expansin genes in response to abiotic stress in sweet osmanthus. In this study, a total of 29 expansin genes were identified and divided into four groups by genome-wide analysis from the sweet osmanthus genome. Transcriptome and quantitative Real-time PCR analysis showed that the cell wall-localized protein expansin-like A(OfEXLA1) gene was significantly induced by salt and drought treatment. Histochemical GUS staining of transgenic Arabidopsis lines in which GUS activity was driven with the OfEXLA1 promoter, GUS activity was significantly induced by salt, drought, and exogenous abscisic acid(ABA). In yeast, we found OfEXLA1overexpression significantly improved the population of cells compared with wild-type strains after NaCl and polyethylene glycol(PEG)treatment. Additionally, OfEXLA1 overexpression not only promoted plant growth, but also improved the salt and drought tolerance in Arabidopsis. To gain insight into the role of ABA signaling in the regulation of OfEXLA1 improving abiotic tolerance in sweet osmanthus, four differentially expressed ABA Insensitive 5(ABI5)-like genes(OfABL4, OfABL5, OfABL7, and OfABL8) were identified from transcriptome, and dualluciferase(dual-LUC) and yeast one hybrid(Y1H) assay showed that OfABL4 and OfABL5 might bind to OfEXLA1 promoter to accumulate the OfEXLA1 expression by responding to ABA signaling to improve abiotic tolerance in sweet osmanthus. These results provide the information for understanding the molecular functions of expansin-like A gene and molecular breeding of sweet osmanthus in future.
基金supported by Fujian Provincial Natural Science(2020J01122587)National Natural Science Foundation of China(82103355,82102255,and 82222901)+1 种基金RGC Theme-based Research Scheme(T12-703/19-R)Research grants Council-General Research Fund(14117422 and 14117123)。
文摘Hepatocellular carcinoma(HCC)is a prevalent and aggressive liver malignancy.The interplay between bile acids(BAs)and the gut microbiota has emerged as a critical factor in HCC development and progression.Under normal conditions,BA metabolism is tightly regulated through a bidirectional interplay between gut microorganisms and BAs.The gut microbiota plays a critical role in BA metabolism,and BAs are endogenous signaling molecules that help maintain liver and intestinal homeostasis.Of note,dysbiotic changes in the gut microbiota during pathogenesis and cancer development can disrupt BA homeostasis,thereby leading to liver inflammation and fibrosis,and ultimately contributing to HCC development.Therefore,understanding the intricate interplay between BAs and the gut microbiota is crucial for elucidating the mechanisms underlying hepatocarcinogenesis.In this review,we comprehensively explore the roles and functions of BA metabolism,with a focus on the interactions between BAs and gut microorganisms in HCC.Additionally,therapeutic strategies targeting BA metabolism and the gut microbiota are discussed,including the use of BA agonists/antagonists,probiotic/prebiotic and dietary interventions,fecal microbiota transplantation,and engineered bacteria.In summary,understanding the complex BA-microbiota crosstalk can provide valuable insights into HCC development and facilitate the development of innovative therapeutic approaches for liver malignancy.
基金supported by the General Research Fund of Hong Kong (14105820)。
文摘α-Glucosidase inhibitors are effective in controlling postprandial hyperglycemia,which play crucial roles in the management of type 2 diabetes.Protocatechuic acid(PCA)is one of phenolic acids existing not only in various plant foods but also as a major microbial metabolite of dietary anthocyanins in the large colon.The present study investigated the inhibitory mechanism of PCA on a-glucosidase in vitro and examined its effect on postprandial blood glucose levels in vivo.Results from in vitro experiments demonstrated that PCA was a mix-type inhibitor of a-glucosidase.Driven by hydrogen bonds and van der Waals interactions,PCA reversibly bound withα-glucosidase to form a stable a-glucosidase-PCA complex in a spontaneous manner.The computational simulation found that PCA could insert into the active cavity of a-glucosidase and establish hydrogen bonds with catalytic amino acid residues.PCA binding aroused the steric hindrance for substrates to enter active sites and caused the structural changes of interacted catalytic amino acid residues.PCA also exhibited postprandial hypoglycemic capacity in diabetic mice.This study may provide the theoretical basis for the application of PCA as an active ingredient of functional foods in dietary management of diabetes.
基金partially supported by the National Natural Science Foundation of China (Grant No.31772285)the National Key R&D Program Project Funding (Grant No.2018YFD1000607)Foundation for 100 Innovative Talents of Hebei Province(Grant No.SLRC2019031)。
文摘The juvenile-to-adult phase change with first flowering as the indicator plays a crucial role in the lifecycle of fruit trees. However, the molecular mechanisms underlying phase change in fruit trees remain largely unknown. Shikimic acid (ShA) pathway is a main metabolic pathway closely related to the synthesis of hormones and many important secondary metabolites participating in plant phase change. So,whether ShA regulates phase change in plants is worth clarifying. Here, the distinct morphological characteristics and the underlying mechanisms of phase change in jujube (Ziziphus jujuba Mill.), an important fruit tree native to China with nutritious fruit and outstanding tolerance abiotic stresses, were clarified. A combined transcriptome and metabolome analysis found that ShA is positively involved in jujube(Yuhong’×Xing 16’) phase change. The genes in the upstream of ShA synthesis pathway (ZjDAHPS, ZjDHQS and ZjSDH), the contents of ShA and the downstream secondary metabolites like phenols were significantly upregulated in the phase change period. Further, the treatment of spraying exogenous ShA verified that ShA at a very low concentration (60 mg·L^(-1)) can substantially speed up the phase change and flowering of jujube and other tested plants including Arabidopsis, tomato and wheat. The exogenous ShA (60 mg·L^(-1)) treatment in jujube seedlings could increase the accumulation of endogenous ShA, enhance leaf photosynthesis and the synthesis of phenols especially flavonoids and phenolic acids, and promote the expression of genes (ZjCOs, ZjNFYs and ZjPHYs) involved in flowering pathway. Basing on above results, we put forward a propose for the underlying mechanism of ShA regulating phase change, and a hypothesis that ShA could be considered a phytohormone-like substance because it is endogenous, ubiquitous, movable and highly efficient at very low concentrations. This study highlights the critical role of ShA in plant phase change and its phytohormone-like properties.
文摘AIM:To explore the correlation of gut microbiota and the metabolites with the progression of diabetic retinopathy(DR)and provide a novel strategy to elucidate the pathological mechanism of DR.METHODS:The fecal samples from 32 type 2 diabetes patients with proliferative retinopathy(PDR),23 with nonproliferative retinopathy(NPDR),27 without retinopathy(DM),and 29 from the sex-,age-and BMI-matched healthy controls(29 HC)were analyzed by 16S rDNA gene sequencing.Sixty fecal samples from PDR,DM,and HC groups were assayed by untargeted metabolomics.Fecal metabolites were measured using liquid chromatographymass spectrometry(LC-MS)analysis.Associations between gut microbiota and fecal metabolites were analyzed.RESULTS:A cluster of 2 microbiome and 12 metabolites accompanied with the severity of DR,and the close correlation of the disease progression with PDR-related microbiome and metabolites were found.To be specific,the structure of gut microbiota differed in four groups.Diversity and richness of gut microbiota were significantly lower in PDR and NPDR groups,than those in DM and HC groups.A cluster of microbiome enriched in PDR group,including Pseudomonas,Ruminococcaceae-UCG-002,Ruminococcaceae-UCG-005,Christensenellaceae-R-7,was observed.Functional analysis showed that the glucose and nicotinate degradations were significantly higher in PDR group than those in HC group.Arginine,serine,ornithine,and arachidonic acid were significantly enriched in PDR group,while proline was enriched in HC group.Functional analysis illustrated that arginine biosynthesis,lysine degradation,histidine catabolism,central carbon catabolism in cancer,D-arginine and D-ornithine catabolism were elevated in PDR group.Correlation analysis revealed that Ruminococcaceae-UCG-002 and Christensenellaceae-R-7 were positively associated with L-arginine,ornithine levels in fecal samples.CONCLUSION:This study elaborates the different microbiota structure in the gut from four groups.The relative abundance of Ruminococcaceae-UCG-002 and Parabacteroides are associated with the severity of DR.Amino acid and fatty acid catabolism is especially disordered in PDR group.This may help provide a novel diagnostic parameter for DR,especially PDR.
基金supported by fund from the National Natural Science Foundation of China(32172322)。
文摘Elaidic acid(EA)stimulation can lead to endoplasmic reticulum stress(ERS),accompanied by a large release of Ca^(2+),and ultimately the activation of NLRP3 inflammasome in Kupffer cells(KCs).Mitochondrial instability or dysfunction may be the key stimulating factors to activate NLRP3 inflammasome,and sustained Ca^(2+)transfer can result in mitochondrial dysfunction.We focused on KCs to explore the damage to mitochondria by EA.After EA stimulation,cells produced an oxidative stress(OS)response with a significant increase in ROS release.Immunoprecipitation experiments and the addition of inhibitors revealed that the increase in the level of intracellular Ca^(2+)led to Ca^(2+)accumulation in the mitochondrial matrix via mitochondria-associated membranes(MAMs).This was accompanied by a significant release of m ROS,loss of MMP and ATP,and a significant increase in mitochondrial permeability transition pore opening,ultimately leading to mitochondrial instability.These findings confirmed the mechanism that EA induced mitochondrial Ca^(2+)imbalance in KCs via MAM,ultimately leading to mitochondrial dysfunction.Meanwhile,EA induced OS and the decrease of MMP and ATP in rat liver,and significant lesions were found in liver mitochondria.Swelling of the inner mitochondrial cristae and mitochondrial vacuolization occurred,with a marked increase in lipid droplets.
基金supported by the Taishan Scholar Program of Shandong Province,China (tsqn202211162)the National Natural Science Foundation of China (22102079)the Natural Science Foundation of Shandong Province of China (ZR2021YQ10,ZR2022QB163)。
文摘The poor stability of RuO_(2)electrocatalysts has been the primary obstacles for their practical application in polymer electrolyte membrane electrolyzers.To dramatically enhance the durability of RuO_(2)to construct activity-stability trade-off model is full of significance but challenging.Herein,a single atom Zn stabilized RuO_(2)with enriched oxygen vacancies(SA Zn-RuO_(2))is developed as a promising alternative to iridium oxide for acidic oxygen evolution reaction(OER).Compared with commercial RuO_(2),the enhanced Ru–O bond strength of SA Zn-RuO_(2)by forming Zn-O-Ru local structure motif is favorable to stabilize surface Ru,while the electrons transferred from Zn single atoms to adjacent Ru atoms protects the Ru active sites from overoxidation.Simultaneously,the optimized surrounding electronic structure of Ru sites in SA ZnRuO_(2)decreases the adsorption energies of OER intermediates to reduce the reaction barrier.As a result,the representative SA Zn-RuO_(2)exhibits a low overpotential of 210 mV to achieve 10 mA cm^(-2)and a greatly enhanced durability than commercial RuO_(2).This work provides a promising dual-engineering strategy by coupling single atom doping and vacancy for the tradeoff of high activity and catalytic stability toward acidic OER.
基金supported by National Natural Science Foundation of China(Nos.31871861 and 31501548)The Apicultural Industry Technology System(NCYTI-43-KXJ17)The Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences(CAAS-ASTIP-2015-IAR)。
文摘The significant demand for high quality food has motivated us to adopt appropriate processing methods to improve the food nutritional quality and flavors.In this study,the effects of five drying methods,namely,pulsed vacuum drying(PVD),freeze drying(FD),infrared drying(IRD),hot-air drying(HAD)and sun drying(SD)on free amino acids(FAAs),α-dicarbonyl compounds(α-DCs)and volatile compounds(VOCs)in rape bee pollen(RBP)were determined.The results showed that FD significantly released the essential amino acids(EAAs)compared with fresh samples while SD caused the highest loss.Glucosone was the dominantα-DCs in RBP and the highest loss was observed after PVD.Aldehydes were the dominant volatiles of RBP and SD samples contained more new volatile substances(especially aldehydes)than the other four drying methods.Comprehensively,FD and PVD would be potential methods to effectively reduce the quality deterioration of RBP in the drying process.
基金The authors are grateful for the financial support from National Natural Science Foundation of China(32001728).
文摘Free amino acid(FAA)is the important component of vinegar that infl uences quality perception and consumer acceptance.FAA is one of the major metabolites produced by microorganisms;however,the microbial metabolic network on FAA biosynthesis remains unclear.Through metagenomic analysis,this work aimed to elucidate the roles of microbes in FAA biosynthesis during Monascus rice vinegar fermentation.Taxonomic profiles from functional analyses showed 14 dominant genera with high contributions to the metabolism pathways.The metabolic network for FAA biosynthesis was then constructed,and the microbial distribution in different metabolic pathways was illuminated.The results revealed that 5 functional genera were closely involved in FAA biosynthesis.This study illuminated the metabolic roles of microorganisms in FAA biosynthesis and provided crucial insights into the functional attributes of microbiota in vinegar fermentation.