An improved configurational-confomational statistical method is developed and the mean-square radius of gyration for atactic poly(α-methylstyrene)(PαMS) chains is studied, in which the effect of large side group...An improved configurational-confomational statistical method is developed and the mean-square radius of gyration for atactic poly(α-methylstyrene)(PαMS) chains is studied, in which the effect of large side groups is considered. The deduced formulas, based on the rotational isomer state theory, are used to investigate the configuration-dependent properties of the atactic polymer chain, and the statistical correlation of the unperturbed polymer chain dimension and structure parameters are calculated. For the fraction of meso dyads Wm= 0.4, the dependence of the radius of gyration Rg and the intrinsic viscosity [η] on the molecule mass M are Rg = 2.63×10^-2 M^0.50 nm and [η] = 7.36 × 10^-2 M^0.497, respectively, which are in agreement with the previous experimental data for the PαMS samples. A small hump is detected in the curve of the characteristic ratio of the unperturbed mean-square radius of gyration versus the chain length for short PαMS chains. The Rg increases linearly with the temperature T, and the effects of the chain length and the tacticity on the temperature coefficient are remarkable. These are quite different from the results for PαMS chains not considering side groups or for the monosubstituted polystyrene chain.展开更多
In this paper, the effects of temperature from 60 ℃ to 80 ℃ and the molar ratios in monomer feed on the copolymerization of α-methylstyrene (AMS) and styrene (St) were studied. The resulting copolymers, designa...In this paper, the effects of temperature from 60 ℃ to 80 ℃ and the molar ratios in monomer feed on the copolymerization of α-methylstyrene (AMS) and styrene (St) were studied. The resulting copolymers, designated as PAS, were characterized by FTIR, GPC, NMR and TGA. When the reaction temperature was below 75 ℃, the molecular weights increased almost linearly as the evolution of the copolymerization. The phenomenon revealed that AMS could mediate the conventional free radical polymerization having some features of a controlled system. As the AMS/St = 50/50 (molar) in feed, the overall fraction of the AMS unit incorporated into the copolymer was as high as 42 mol%, the monomer conversion could be more than 90 wt% and the molecular weights could reach as high as 4400. However, since the styrene is more reactive than AMS, the AMS fraction in copolymer increased with the overall monomer conversion. The 13C-NMR revealed the products were random copolymers which had triads, such as -AMS-AMS-AMS-, -St-AMS-AMS- (-AMS-AMS-St-) and -St-AMS-St-. TGA curves demonstrated that the degradation temperature of the resulting copolymers went down from about 356.9 ℃ (0 mol% AMS) to 250.2 ℃ (42 tool% AMS). This behavior demonstrated that there exist weak bonds in the AMS- containing sequences which could be used as potential free radical generators.展开更多
In the present paper the synthesis of block copolymers via the transformation from living anionic polymerization (LAP) to atom transfer radical polymerization (ATRP) was described. α-Bromine-terminated polystyrenes(...In the present paper the synthesis of block copolymers via the transformation from living anionic polymerization (LAP) to atom transfer radical polymerization (ATRP) was described. α-Bromine-terminated polystyrenes(PStBr) in the LAP step was prepared by using n-BuLi as initiator, tetrahydrofuran (THF) as the activator, α-methylstyrene (α-MeSt) as the capping group and liquid bromine (Br_2) as the bromating agent. The effects of reaction conditions such as the amounts of α-MeSt, THF, and Br_2 as well as molecular weight of polystyrene on the bromating efficiency (BE) and coupling extent (CE) were examined. The present results show that the yield of PStBr obtained was more than 93. 8% and the coupling reaction was substantially absent. PStBr was further used as the macroinitiator in the polymerization of methyl-methacrylate (MMA) in the presence of copper (I ) halogen and 2, 2' -bipyridine (bpy) complexes. It was found that the molecular weight of the resulted PSt-b-PMMA increased linearly with the increase of the conversion of MMA and the polydispersity was 1. 2-1.6. The structures of PStBr and P(St-b-MMA) were characterized by ~1H NMR spectra.展开更多
文摘An improved configurational-confomational statistical method is developed and the mean-square radius of gyration for atactic poly(α-methylstyrene)(PαMS) chains is studied, in which the effect of large side groups is considered. The deduced formulas, based on the rotational isomer state theory, are used to investigate the configuration-dependent properties of the atactic polymer chain, and the statistical correlation of the unperturbed polymer chain dimension and structure parameters are calculated. For the fraction of meso dyads Wm= 0.4, the dependence of the radius of gyration Rg and the intrinsic viscosity [η] on the molecule mass M are Rg = 2.63×10^-2 M^0.50 nm and [η] = 7.36 × 10^-2 M^0.497, respectively, which are in agreement with the previous experimental data for the PαMS samples. A small hump is detected in the curve of the characteristic ratio of the unperturbed mean-square radius of gyration versus the chain length for short PαMS chains. The Rg increases linearly with the temperature T, and the effects of the chain length and the tacticity on the temperature coefficient are remarkable. These are quite different from the results for PαMS chains not considering side groups or for the monosubstituted polystyrene chain.
基金financially supported by the National Natural Science Foundation of China(Nos.51033001 and 21074006)
文摘In this paper, the effects of temperature from 60 ℃ to 80 ℃ and the molar ratios in monomer feed on the copolymerization of α-methylstyrene (AMS) and styrene (St) were studied. The resulting copolymers, designated as PAS, were characterized by FTIR, GPC, NMR and TGA. When the reaction temperature was below 75 ℃, the molecular weights increased almost linearly as the evolution of the copolymerization. The phenomenon revealed that AMS could mediate the conventional free radical polymerization having some features of a controlled system. As the AMS/St = 50/50 (molar) in feed, the overall fraction of the AMS unit incorporated into the copolymer was as high as 42 mol%, the monomer conversion could be more than 90 wt% and the molecular weights could reach as high as 4400. However, since the styrene is more reactive than AMS, the AMS fraction in copolymer increased with the overall monomer conversion. The 13C-NMR revealed the products were random copolymers which had triads, such as -AMS-AMS-AMS-, -St-AMS-AMS- (-AMS-AMS-St-) and -St-AMS-St-. TGA curves demonstrated that the degradation temperature of the resulting copolymers went down from about 356.9 ℃ (0 mol% AMS) to 250.2 ℃ (42 tool% AMS). This behavior demonstrated that there exist weak bonds in the AMS- containing sequences which could be used as potential free radical generators.
基金the National Natural Science Foundation of China!(No. 29634010-2) Research Institute of BeijingYanshan Petrochemical Corpor
文摘In the present paper the synthesis of block copolymers via the transformation from living anionic polymerization (LAP) to atom transfer radical polymerization (ATRP) was described. α-Bromine-terminated polystyrenes(PStBr) in the LAP step was prepared by using n-BuLi as initiator, tetrahydrofuran (THF) as the activator, α-methylstyrene (α-MeSt) as the capping group and liquid bromine (Br_2) as the bromating agent. The effects of reaction conditions such as the amounts of α-MeSt, THF, and Br_2 as well as molecular weight of polystyrene on the bromating efficiency (BE) and coupling extent (CE) were examined. The present results show that the yield of PStBr obtained was more than 93. 8% and the coupling reaction was substantially absent. PStBr was further used as the macroinitiator in the polymerization of methyl-methacrylate (MMA) in the presence of copper (I ) halogen and 2, 2' -bipyridine (bpy) complexes. It was found that the molecular weight of the resulted PSt-b-PMMA increased linearly with the increase of the conversion of MMA and the polydispersity was 1. 2-1.6. The structures of PStBr and P(St-b-MMA) were characterized by ~1H NMR spectra.