α-MoO3 nanobelts/carbon nanotubes(CNTs) composites were synthesized by simple hydrothermal method followed by CNTs incorporating, and characterized by X-ray diffraction(XRD) and scanning electron microscopy(SEM...α-MoO3 nanobelts/carbon nanotubes(CNTs) composites were synthesized by simple hydrothermal method followed by CNTs incorporating, and characterized by X-ray diffraction(XRD) and scanning electron microscopy(SEM). Cyclic voltammogram(CV), electrochemical impedance spectroscopy(EIS), and galvanostatic charge/discharge testing techniques were employed to evaluate the electrochemical behaviors of α-MoO3 nanobelts/CNTs composites. The results exhibited that compared to bare α-MoO3 nanobelts, the α-MoO3 nanobelts/CNTs composites have better electrochemical performances as cathode materials for lithium ion battery, maintaining a reversible specific capacity of 222.2 mAh/g at 0.3 C after 50 cycles, and 74.1% retention of the first reversible capacity. In addition, the Rct value of the α-MoO3 nanobelts/CNTs is 13 Ω, much lower than 66 Ω of the bare α-MoO3 nanobelts. The better electrochemical performances of the α-MoO3 nanobelts/CNTs composites can be attributed to the effects of the high conductive CNTs network.展开更多
The restacking hindrance of MXene films restricts their development for high volumetric energy density of flexible supercapacitors toward applications in miniature,portable,wearable or implantable electronic devices.A...The restacking hindrance of MXene films restricts their development for high volumetric energy density of flexible supercapacitors toward applications in miniature,portable,wearable or implantable electronic devices.A valid solution is construction of rational heterojunction to achieve a synergistic property enhancement.The introduction of spacers such as graphene,CNTs,cellulose and the like demonstrates limited enhancement in rate capability.The combination of currently reported pseudocapacitive materials and MXene tends to express the potential capacitance of pseudocapacitive materials rather than MXene,leading to low volumetric capacitance.Therefore,it is necessary to exploit more ideal candidate materials to couple with MXene for fully expressing both potentials.Herein,for the first time,high electrochemically active materials of ultrathin MoO3 nanobelts are intercalated into MXene films.In the composites,MoO3 nanobelts not only act as pillaring components to prevent restacking of MXene nanosheets for fully expressing the MXene pseudocapacitance in acidic environment but also provide considerable pseudocapacitive contribution.As a result,the optimal M/MoO3 electrode not only achieves a breakthrough in volumetric capacitance(1817 F cm-3 and 545 F g-1),but also maintains good rate capability and excellent flexibility.Moreover,the corresponding symmetric supercapacitor likewise shows a remarkable energy density of 44.6 Wh L-1(13.4 Wh kg-1),rendering the flexible electrode a promising candidate for application in high-energy-density energy storage devices.展开更多
High qualityβ-Ga_(2)O_(3)single crystal nanobelts with length of 2−3 mm and width from tens of microns to 132μm were synthesized by carbothermal reduction method.Based on the grown nanobelt with the length of 600μm...High qualityβ-Ga_(2)O_(3)single crystal nanobelts with length of 2−3 mm and width from tens of microns to 132μm were synthesized by carbothermal reduction method.Based on the grown nanobelt with the length of 600μm,the dual-Schottky-junctions coupling device(DSCD)was fabricated.Due to the electrically floating Ga_(2)O_(3)nanobelt region coupling with the double Schottky-junctions,the current I_(S2)increases firstly and rapidly reaches into saturation as increase the voltage V_(S2).The saturation current is about 10 pA,which is two orders of magnitude lower than that of a single Schottky-junction.In the case of solar-blind ultraviolet(UV)light irradiation,the photogenerated electrons further aggravate the coupling physical mechanism in device.I_(S2)increases as the intensity of UV light increases.Under the UV light of 1820μW/cm^(2),I_(S2)quickly enters the saturation state.At V_(S2)=10 V,photo-to-dark current ratio(PDCR)of the device reaches more than 104,the external quantum efficiency(EQE)is 1.6×10^(3)%,and the detectivity(D*)is 7.5×10^(12)Jones.In addition,the device has a very short rise and decay times of 25−54 ms under different positive and negative bias.DSCD shows unique electrical and optical control characteristics,which will open a new way for the application of nanobelt-based devices.展开更多
Porous α-Fe2O3 nanobelts have been prepared via a solvothermal route and subsequent calcination. The as-prepared nanostructure was characterized by XRD, FESEM, TEM, N2 adsorption-desorption isotherms, etc. The α-Fe2...Porous α-Fe2O3 nanobelts have been prepared via a solvothermal route and subsequent calcination. The as-prepared nanostructure was characterized by XRD, FESEM, TEM, N2 adsorption-desorption isotherms, etc. The α-Fe2O3 nanobelts presented obvious porous structures with the length of ca. 1~2μm, width of ca. 200~350 nm and thickness of ca. 30~60 nm. It was found that the assistance of inorganic additives played an important role in the shape control of α-Fe2O3 nanostructure. The gas-sensing performance of the fabricated sensor based on α-Fe2O3 nanobelts sample was also investigated, and the response towards 1000 ppm acetone can reach 24.4. In addition, the gas-sensing conductive mechanism of the sensor was also proposed.展开更多
Developing suitable anode materials for potassium-ion batteries(PIBs)remains a great challenge owing to the limited theoretical capacity of active materials and large radius of K+ion(1.38?).To solve these obstacles,by...Developing suitable anode materials for potassium-ion batteries(PIBs)remains a great challenge owing to the limited theoretical capacity of active materials and large radius of K+ion(1.38?).To solve these obstacles,by integrating the principles of multielectron transfer and rational porous crystal framework,we creatively propose the monoclinic Cu_(3)(OH)_(2)V_(2)O_(7)·2H_(2)O(CVO)as a novel anode for PIBs.Furthermore,inspired by the metastable nature of CVO under high temperature/pressure,we skillfully design a facile hydrothermal recrystallization strategy without the phase change and surfactants addition.Thus,for the first time,the porous composite of Cu_(3)(OH)_(2)V_(2)O_(7)·2H_(2)O nanobelts covered in situ by reduced graphene oxide(CVO NBs/r GO)was assembled,greatly improving the deficiencies of CVO.When used as a novel anode for PIBs,CVO NBs/r GO delivers large specific capacity(up to 551.4 m Ah g^(-1)at 50 m A g^(-1)),high-rate capability(215.3 m Ah g^(-1)at 2.5 A g^(-1))and super durability(203.6 m Ah g^(-1)at 500 m A g^(-1)even after 1000 cycles).The outstanding performance can be ascribed to the synergistic merits of desirable structural features of monoclinic CVO nanobelts and the highly conductive graphene 3D network,thus promoting the composite material stability and electrical/ionic conductivity.This work reveals a novel metal vanadate-based anode material for PIBs,would further motivate the subsequent batteries research on M_(3)(OH)_(2)V_(2)O_(7)-n H_(2)O(M;Co,Ni,Cu,Zn),and ultimately expands valuable fundamental understanding on designing other high-performance electrode materials,including the combined strategies of multielectron transfer with rational porous crystal framework,and the composite fabrication of 1D electrode nanostructure with conductive carbon matrix.展开更多
Vanadium oxide hydrate V3O7..H2O (H2V3O8) nanobelts have been synthesized by hydrothermal approach using V2O5 as vanadium source and phenolphthalein as structure-directing agent. Techniques X-ray powder diffraction (X...Vanadium oxide hydrate V3O7..H2O (H2V3O8) nanobelts have been synthesized by hydrothermal approach using V2O5 as vanadium source and phenolphthalein as structure-directing agent. Techniques X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), infrared spectroscopy and nitrogen adsorption/desorption isotherms have been used to characterize the structure, morphology and composition of the nanobelts. The V3O7. H2O nanobelts are up to several hundreds of nanometers, the widths and thicknesses are 90 and 40 nm, respectively. The electroactivity of the nanobelts has been investigated. The as-synthesized material is promising for chemical and energy-related applications such as catalysts, electrochemical device and it may be applied in rechargeable lithium-ion batteries.展开更多
基金Funded by the Fundamental Research Funds for the Central Universities(No.2014QNA08)
文摘α-MoO3 nanobelts/carbon nanotubes(CNTs) composites were synthesized by simple hydrothermal method followed by CNTs incorporating, and characterized by X-ray diffraction(XRD) and scanning electron microscopy(SEM). Cyclic voltammogram(CV), electrochemical impedance spectroscopy(EIS), and galvanostatic charge/discharge testing techniques were employed to evaluate the electrochemical behaviors of α-MoO3 nanobelts/CNTs composites. The results exhibited that compared to bare α-MoO3 nanobelts, the α-MoO3 nanobelts/CNTs composites have better electrochemical performances as cathode materials for lithium ion battery, maintaining a reversible specific capacity of 222.2 mAh/g at 0.3 C after 50 cycles, and 74.1% retention of the first reversible capacity. In addition, the Rct value of the α-MoO3 nanobelts/CNTs is 13 Ω, much lower than 66 Ω of the bare α-MoO3 nanobelts. The better electrochemical performances of the α-MoO3 nanobelts/CNTs composites can be attributed to the effects of the high conductive CNTs network.
基金supported by Major Science and Technology Projects of Heilongjiang Province(2019ZX09A01)National Key Technology R&D Program(Grant No.2017YFB1401805)+1 种基金the China Postdoctoral Science Foundation(2019T120285,2018M641884)Heilongjiang Province Postdoctoral Science Foundation(LBH-Z18235)。
文摘The restacking hindrance of MXene films restricts their development for high volumetric energy density of flexible supercapacitors toward applications in miniature,portable,wearable or implantable electronic devices.A valid solution is construction of rational heterojunction to achieve a synergistic property enhancement.The introduction of spacers such as graphene,CNTs,cellulose and the like demonstrates limited enhancement in rate capability.The combination of currently reported pseudocapacitive materials and MXene tends to express the potential capacitance of pseudocapacitive materials rather than MXene,leading to low volumetric capacitance.Therefore,it is necessary to exploit more ideal candidate materials to couple with MXene for fully expressing both potentials.Herein,for the first time,high electrochemically active materials of ultrathin MoO3 nanobelts are intercalated into MXene films.In the composites,MoO3 nanobelts not only act as pillaring components to prevent restacking of MXene nanosheets for fully expressing the MXene pseudocapacitance in acidic environment but also provide considerable pseudocapacitive contribution.As a result,the optimal M/MoO3 electrode not only achieves a breakthrough in volumetric capacitance(1817 F cm-3 and 545 F g-1),but also maintains good rate capability and excellent flexibility.Moreover,the corresponding symmetric supercapacitor likewise shows a remarkable energy density of 44.6 Wh L-1(13.4 Wh kg-1),rendering the flexible electrode a promising candidate for application in high-energy-density energy storage devices.
基金supported by Natural Science Basic Research Program in Shaanxi Province of China(No.2023-JCYB-574)National Natural Science Foundation of China(No.62204203).
文摘High qualityβ-Ga_(2)O_(3)single crystal nanobelts with length of 2−3 mm and width from tens of microns to 132μm were synthesized by carbothermal reduction method.Based on the grown nanobelt with the length of 600μm,the dual-Schottky-junctions coupling device(DSCD)was fabricated.Due to the electrically floating Ga_(2)O_(3)nanobelt region coupling with the double Schottky-junctions,the current I_(S2)increases firstly and rapidly reaches into saturation as increase the voltage V_(S2).The saturation current is about 10 pA,which is two orders of magnitude lower than that of a single Schottky-junction.In the case of solar-blind ultraviolet(UV)light irradiation,the photogenerated electrons further aggravate the coupling physical mechanism in device.I_(S2)increases as the intensity of UV light increases.Under the UV light of 1820μW/cm^(2),I_(S2)quickly enters the saturation state.At V_(S2)=10 V,photo-to-dark current ratio(PDCR)of the device reaches more than 104,the external quantum efficiency(EQE)is 1.6×10^(3)%,and the detectivity(D*)is 7.5×10^(12)Jones.In addition,the device has a very short rise and decay times of 25−54 ms under different positive and negative bias.DSCD shows unique electrical and optical control characteristics,which will open a new way for the application of nanobelt-based devices.
基金supported by the Natural Science Foundation of Fujian Province(No.2017J05021)the National Natural Science Foundation of China(No.21201035)Fuzhou university undergraduate research training program in chemistry(HX2018-14)
文摘Porous α-Fe2O3 nanobelts have been prepared via a solvothermal route and subsequent calcination. The as-prepared nanostructure was characterized by XRD, FESEM, TEM, N2 adsorption-desorption isotherms, etc. The α-Fe2O3 nanobelts presented obvious porous structures with the length of ca. 1~2μm, width of ca. 200~350 nm and thickness of ca. 30~60 nm. It was found that the assistance of inorganic additives played an important role in the shape control of α-Fe2O3 nanostructure. The gas-sensing performance of the fabricated sensor based on α-Fe2O3 nanobelts sample was also investigated, and the response towards 1000 ppm acetone can reach 24.4. In addition, the gas-sensing conductive mechanism of the sensor was also proposed.
基金supported by the National Natural Science Foundation of China(52072118,51772089)the Youth 1000 Talent Program of China+3 种基金the Research and Development Plan of Key Areas in Hunan Province(2019GK2235)the Key Research and Development Program of Ningxia(2020BDE03007)the China Postdoctoral Science Foundation(2019M653649)the Guangdong Basic and Applied Basic Research Fund(2019A1515110518,2019A1515111188,2020B0909030004)。
文摘Developing suitable anode materials for potassium-ion batteries(PIBs)remains a great challenge owing to the limited theoretical capacity of active materials and large radius of K+ion(1.38?).To solve these obstacles,by integrating the principles of multielectron transfer and rational porous crystal framework,we creatively propose the monoclinic Cu_(3)(OH)_(2)V_(2)O_(7)·2H_(2)O(CVO)as a novel anode for PIBs.Furthermore,inspired by the metastable nature of CVO under high temperature/pressure,we skillfully design a facile hydrothermal recrystallization strategy without the phase change and surfactants addition.Thus,for the first time,the porous composite of Cu_(3)(OH)_(2)V_(2)O_(7)·2H_(2)O nanobelts covered in situ by reduced graphene oxide(CVO NBs/r GO)was assembled,greatly improving the deficiencies of CVO.When used as a novel anode for PIBs,CVO NBs/r GO delivers large specific capacity(up to 551.4 m Ah g^(-1)at 50 m A g^(-1)),high-rate capability(215.3 m Ah g^(-1)at 2.5 A g^(-1))and super durability(203.6 m Ah g^(-1)at 500 m A g^(-1)even after 1000 cycles).The outstanding performance can be ascribed to the synergistic merits of desirable structural features of monoclinic CVO nanobelts and the highly conductive graphene 3D network,thus promoting the composite material stability and electrical/ionic conductivity.This work reveals a novel metal vanadate-based anode material for PIBs,would further motivate the subsequent batteries research on M_(3)(OH)_(2)V_(2)O_(7)-n H_(2)O(M;Co,Ni,Cu,Zn),and ultimately expands valuable fundamental understanding on designing other high-performance electrode materials,including the combined strategies of multielectron transfer with rational porous crystal framework,and the composite fabrication of 1D electrode nanostructure with conductive carbon matrix.
文摘Vanadium oxide hydrate V3O7..H2O (H2V3O8) nanobelts have been synthesized by hydrothermal approach using V2O5 as vanadium source and phenolphthalein as structure-directing agent. Techniques X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), infrared spectroscopy and nitrogen adsorption/desorption isotherms have been used to characterize the structure, morphology and composition of the nanobelts. The V3O7. H2O nanobelts are up to several hundreds of nanometers, the widths and thicknesses are 90 and 40 nm, respectively. The electroactivity of the nanobelts has been investigated. The as-synthesized material is promising for chemical and energy-related applications such as catalysts, electrochemical device and it may be applied in rechargeable lithium-ion batteries.