Light olefins is the incredibly important materials in chemical industry.Methanol to olefins(MTO),which provides a non-oil route for light olefins production,received considerable attention in the past decades.However...Light olefins is the incredibly important materials in chemical industry.Methanol to olefins(MTO),which provides a non-oil route for light olefins production,received considerable attention in the past decades.However,the catalyst deactivation is an inevitable feature in MTO processes,and regeneration,therefore,is one of the key steps in industrial MTO processes.Traditionally the MTO catalyst is regenerated by removing the deposited coke via air combustion,which unavoidably transforms coke into carbon dioxide and reduces the carbon utilization efficiency.Recent study shows that the coke species over MTO catalyst can be regenerated via steam,which can promote the light olefins yield as the deactivated coke species can be essentially transferred to industrially useful synthesis gas,is a promising pathway for further MTO processes development.In this work,we modelled and analyzed these two MTO regeneration methods in terms of carbon utilization efficiency and technology economics.As shown,the steam regeneration could achieve a carbon utilization efficiency of 84.31%,compared to 74.74%for air combustion regeneration.The MTO processes using steam regeneration can essentially achieve the near-zero carbon emission.In addition,light olefins production of the MTO processes using steam regeneration is 12.81%higher than that using air combustion regeneration.In this regard,steam regeneration could be considered as a potential yet promising regeneration method for further MTO processes,showing not only great environmental benefits but also competitive economic performance.展开更多
Light olefins are important organic building blocks in the chemicals industry.The main low-carbon olefin production methods,such as catalytic cracking and steam cracking,have considerable room for improvement in their...Light olefins are important organic building blocks in the chemicals industry.The main low-carbon olefin production methods,such as catalytic cracking and steam cracking,have considerable room for improvement in their utilization of hydrocarbons.This review provides a thorough overview of recent studies on catalytic cracking,steam cracking,and the conversion of crude oil processes.To maximize the production of light olefins and reduce carbon emissions,the perceived benefits of various technologies are examined.Taking olefin generation and conversion as a link to expand upstream and downstream processes,a targeted catalytic cracking to olefins(TCO)process is proposed to meet current demands for the transformation of oil refining into chemical production.The main innovations of this process include a multiple feedstock supply,the development of medium-sized catalysts,and a diameter-transformed fluidizedbed reactor with different feeding schemes.In combination with other chemical processes,TCO is expected to play a critical role in enabling petroleum refining and chemical processes to achieve low carbon dioxide emissions.展开更多
CO_(2)hydrogenation has been considered to be a highly promising route for the production of high-value olefins(HVOs)while also mitigating CO_(2)emissions.However,it is challenging to achieve high selectivity and main...CO_(2)hydrogenation has been considered to be a highly promising route for the production of high-value olefins(HVOs)while also mitigating CO_(2)emissions.However,it is challenging to achieve high selectivity and maintain stable performance for HVOs(ethylene,propylene,and linear a-olefins)over a prolonged reaction time due to the difficulty in precise control of carbon coupling and rapid catalyst deactivation.Herein,we present a selective Ba and Na co-modified Fe catalyst enriched with Fe_(5)C_(2)and Fe_(3)C active sites that can boost HVO synthesis with up to 66.1%selectivity at an average CO_(2)conversion of 38%for over 500 h.Compared to traditional NaFe catalyst,the combined effect of Ba and Na additives in the NaBaFe-0.5 catalyst suppressed excess oxidation of FeCxsites by H_(2)O.The absence of Fe3O4phase in the spent NaBaFe-0.5 catalyst reflects the stabilization effect of the co-modifiers on the FeCxsites.This study provides a strategy to design Fe-based catalysts that can be scaled up for the stable synthesis of HVOs from CO_(2)hydrogenation.展开更多
When converting C_(5) hydrocarbons to light olefins by catalytic pyrolysis,the generation of low value-added methane will affect the atomic utilization efficiency of C_(5) hydrocarbons.To improve the atomic utilizatio...When converting C_(5) hydrocarbons to light olefins by catalytic pyrolysis,the generation of low value-added methane will affect the atomic utilization efficiency of C_(5) hydrocarbons.To improve the atomic utilization efficiency,different generation pathways of light olefins and methane in the catalytic pyrolysis of C_(5) hydrocarbons were analyzed,and the effects of reaction conditions and zeolite types were inves-tigated.Results showed that light olefins were mainly formed by breaking the C_(2)-C_(3) bond in the middle position,while methane was formed by breaking the C_(1)-C_(2) bond at the end.Meanwhile,it was discovered that the hydrogen transfer reaction could be reduced by about 90%by selecting MTT zeolite with 1D topology and FER zeolite with 2D topology under high weight hourly space velocity(WHSV)and high temperature operations,thus leading to the improvement of the light olefins selectivity for the catalytic pyrolysis of n-pentane and 1-pentene to 55.12% and 74.60%,respectively.Moreover,the fraction ratio of terminal C_(1)-C_(2) bond cleavage was reduced,which would reduce the selectivity of methane to 6.63%and 1.83%.Therefore,zeolite with low hydrogen transfer activity and catalytic pyrolysis process with high WHsV will be conducive to maximize light olefins and to decrease methane.展开更多
Selective epoxidation of olefins is an important field in chemical industry.In this work,we developed a new phosphotungstic acid catalyst{[(C_8H_(17))(CH_(3))_(2)N]_(2)(CH_(2))_(3)}_(1.5){PO_(4)[WO(O_(2))_(2)]_(4)}wit...Selective epoxidation of olefins is an important field in chemical industry.In this work,we developed a new phosphotungstic acid catalyst{[(C_8H_(17))(CH_(3))_(2)N]_(2)(CH_(2))_(3)}_(1.5){PO_(4)[WO(O_(2))_(2)]_(4)}with long carbon chain and biquaternary ammonium cation.Cyclohexene could be epoxidized to cyclohexene oxide in 96.3%conversion and 98.2%selectivity.The catalyst type,solvent type,catalyst loading,initial molar ratio,temperature,cycle performance and substrate extensibility were studied and optimized,the kinetic parameters about overall reaction and unit reaction were also calculated.Dynamic light scattering analysis was carried out to explain the different catalytic performance between catalysts with different carbon chain length.This novel catalyst and the corresponding dynamics and mechanism study could probably help the industrial application on the epoxidation of cyclohexene with H_(2)O_(2).展开更多
Fe‐based catalysts for the production of light olefins via the Fischer‐Tropsch synthesis were modi‐fied by adding a Zn promoter using both microwave‐hydrothermal and impregnation methods. The physicochemical prope...Fe‐based catalysts for the production of light olefins via the Fischer‐Tropsch synthesis were modi‐fied by adding a Zn promoter using both microwave‐hydrothermal and impregnation methods. The physicochemical properties of the resulting catalysts were determined by scanning electron mi‐croscopy, the Brunauer‐Emmett‐Teller method, X‐ray diffraction, H2 temperature‐programed re‐duction and X‐ray photoelectron spectroscopy. The results demonstrate that the addition of a Zn promoter improves both the light olefin selectivity over the catalyst and the catalyst stability. The catalysts prepared via the impregnation method, which contain greater quantities of surface ZnO, exhibit severe carbon deposition following activity trials. In contrast, those materials synthesized using the microwave‐hydrothermal approach show improved dispersion of Zn and Fe phases and decreased carbon deposition, and so exhibit better CO conversion and stability.展开更多
NiSAPO-34 and NiSAPO-34/HZSM-5 were prepared and evaluated for the performance of dimethyl ether (DME) conversion to light olefins (DTO). The processes of two-stage light olefin production, DME synthesis and the f...NiSAPO-34 and NiSAPO-34/HZSM-5 were prepared and evaluated for the performance of dimethyl ether (DME) conversion to light olefins (DTO). The processes of two-stage light olefin production, DME synthesis and the following DTO, were also investigated using biosyngas as feed gas over Cu/Zn/A1/HZSM-5 and the optimized 2%NiSAPO-34/HZSM- 5. The results indicated that adding 2%Ni to SAPO-34 did not change its topology structure, but resulted in the forming of the moderately strong acidity with decreasing acid amounts, which slightly enhanced DME conversion activity and C2=-C3= selectiw ity. Mechanically mixing 2%NiSAPO-34 with HZSM-5 at the weight ratio of 3.0 further prolonged DME conversion activity to be more than 3 h, which was due to the stable acid sites from HZSM-5. The highest selectivity to light olefins of 90.8% was achieved at 2 h time on stream. The application of the optimized 2%NiSAPO-34/HZSM-5 in the second-stage reactor for DTO reaction showed that the catalytic activity was steady for more than 5 h and light olefin yield was as high as 84.6 g/m3syngas when the biosyngas (H2/CO/CO2/N2/CH4=41.5/26.9/14.2/14.6/2.89, vol%) with low H/C ratio of 1.0 was used as feed gas.展开更多
Low-carbon light olefins are the basic feedstocks for the petrochemical industry. Catalytic cracking of crude bio-oil and its model compounds (including methanol, ethanol, acetic acid, acetone, and phenol) to light ...Low-carbon light olefins are the basic feedstocks for the petrochemical industry. Catalytic cracking of crude bio-oil and its model compounds (including methanol, ethanol, acetic acid, acetone, and phenol) to light olefins were performed by using the La/HZSM-5 catalyst. The highest olefins yield from crude bio-oil reached 0.19 kg/(kg crude bio-oil). The reaction conditions including temperature, weight hourly space velocity, and addition of La into the HZSM-5 zeolite can be used to control both olefins yield and selectivity. Moderate adjusting the acidity with a suitable ratio between the strong acid and weak acid sites through adding La to the zeolite effectively enhanced the olefins selectivity and improved the catalyst stability. The production of light olefins from crude bio-oil is closely associated with the chemical composition and hydrogen to carbon effective ratios of feedstock. The comparison between the catalytic cracking and pyrolysis of bio-oil was studied. The mechanism of the bio-oil conversion to light olefins was also discussed.展开更多
The modified Ce-SAPO-34 catalysts were prepared with three methods, i.e., the liquid ion exchange with air calcination, impregnation with air calcination and impregnation with steam calcination methods. The catalytic ...The modified Ce-SAPO-34 catalysts were prepared with three methods, i.e., the liquid ion exchange with air calcination, impregnation with air calcination and impregnation with steam calcination methods. The catalytic performances of the catalysts for methanol to olefins were investigated. The properties of the catalysts were characterized using XRD, BET, XRF, FT-IR and NH3-TPD. The results indicated that compared to the SAPO-34 catalyst the catalyst prepared with the impregnation and air calcination prolonged the lifetime by 40 min and improved the selectivity to ethylene by 5% (mol) and the catalyst prepared with the impregnation and steam calcination showed the best modification effect, prolonging the lifetime by 70 min and improving the ethylene selectivity by 10% (mol). The catalyst prepared with the liquid ion exchange showed similar behaviour as the SAPO-34 catalyst. It was verified that the porous structure and surface acidity of these catalysts determined their catalytic behaviors.展开更多
ZSM-5 zeolite catalyst modified by a trace of metal cations shows high activity and high selectivity for the reaction of methanol to olefins (MTO), but it inclines to deactivate during the reaction. In this paper, t...ZSM-5 zeolite catalyst modified by a trace of metal cations shows high activity and high selectivity for the reaction of methanol to olefins (MTO), but it inclines to deactivate during the reaction. In this paper, the mechanism of the catalyst deactivation and the regeneration method were studied by X-ray diffraction (XRD), N2 adsorption-desorption, infrared spectra (IR), and infrared spectra coupled with NH3 molecular probes (IR-NH3). These characterizations indicated that coke formation was the main reason for the catalyst deactivation. To regenerate the deactivated catalyst, two methods, i.e., calcination and methanol leaching, were used. N2 adsorption-desorption, IR and IR-NH3 characteriza-tions showed that both methods can eliminate coke deposited on the catalyst and make the catalyst reactivated. XRD showed that the structure of the catalyst did not change after regeneration. Interestingly, the regenerated catalyst even showed better catalytic performance of the MTO reaction than the fresh one. Besides, the calcination regeneration can eliminate coke more completely, however, the methanol leaching method can be more easily carried out in situ in the reactor.展开更多
Directly making light olefins via CO hydrogenation is a promising process toobtain a non-petroleum based supply of alkenes. Limited by the ASF distribution function ofFischer-Tropsch synthesis, the yield of light olef...Directly making light olefins via CO hydrogenation is a promising process toobtain a non-petroleum based supply of alkenes. Limited by the ASF distribution function ofFischer-Tropsch synthesis, the yield of light olefins (C_2-C_4) can not reach the desired levels,which is a great challenge to overcome. Beginning with a brief introduction of F-T synthesis, thispaper provides a review of current research, including thermodynamic analysis, the ASF distributionfunction, the reaction performance of CO hydrogenation and slurry reactor studies. The problemscurrently faced by this research area are presented at the end of the article.展开更多
Cobalt-manganese nano catalysts were prepared by sol-gel method. This research investigated the effects of different cobalt-manganese (Co/Mn = 1/1) loading, pH and calcination conditions on the catalytic performance...Cobalt-manganese nano catalysts were prepared by sol-gel method. This research investigated the effects of different cobalt-manganese (Co/Mn = 1/1) loading, pH and calcination conditions on the catalytic performance of Co-Mn/TiO2 catalysts for Fischer-Tropsch synthesis (FTS) in a fixed bed reactor. It was found that the catalyst containing 30wt%(Co-Mn)/TiO2 was an optimal catalyst for the conversion of synthesis gas to light olefins especially propylene. The activity and selectivity of optimal catalyst were studied under different operational conditions. The results showed that the best operational conditions were H2/CO = 1/1 molar feed ratio at 250 ℃ and GHSV = 1300 h-1 un- der atmospheric pressure. Characterization of catalysts was carried out by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption-desorlation measurements.展开更多
The Fischer–Tropsch to olefins(FTO) process is a method for the direct conversion of synthesis gas to lower C–Colefins. Carbon-supported iron carbide nanoparticles are attractive catalysts for this reaction.The ca...The Fischer–Tropsch to olefins(FTO) process is a method for the direct conversion of synthesis gas to lower C–Colefins. Carbon-supported iron carbide nanoparticles are attractive catalysts for this reaction.The catalytic activity can be improved and undesired formation of alkanes can be suppressed by the addition of sodium and sulfur as promoters but the influence of their content and ratio remains poorly understood and the promoted catalysts often suffer from rapid deactivation due to particle growth. A series of carbon black-supported iron catalysts with similar iron content and nominal sodium/sulfur loadings of 1–30/0.5–5 wt% with respect to iron are prepared and characterized under FTO conditions at 1and 10 bar syngas pressure to illuminate the influence of the promoter level on the catalytic properties.Iron particles and promoters undergo significant reorganization during FTO operation under industrially relevant conditions. Low sodium content(1–3 wt%) leads to a delay in iron carbide formation. Sodium contents of 15–30 wt% lead to rapid loss of catalytic activity due to the covering of the iron surface with promoters during particle growth under FTO operation. Higher activity and slower loss of activity are observed at low promoter contents(1–3 wt% sodium and 0.5–1 wt% sulfur) but a minimum amount of alkali is required to effectively suppress methane and C–Cparaffin formation. A reference catalyst support(carbide-derived carbon aerogel) shows that the optimum promoter level depends on iron particle size and support pore structure.展开更多
A series of Fe/HZSM-5 catalysts with different iron loadings were prepared by impregnation method.Characterization was performed by N2 adsorption-desorption,X-ray diffraction(XRD),NH3 temperature-programmed desorpt...A series of Fe/HZSM-5 catalysts with different iron loadings were prepared by impregnation method.Characterization was performed by N2 adsorption-desorption,X-ray diffraction(XRD),NH3 temperature-programmed desorption(NH3-TPD),temperature-programmed reduction (TPR),temperature-programmed oxidation(TPO)and thermogravimetry(TG)analysis.Iron content in the synthesized samples varied from 1.1 wt%to 20 wt%.The obtained samples have been used for ethanol conversion into light olefins.It was found that the amount of strong acidity at 300 -5 50-C on Fe-modified samples was decreased,going with another new acid site appearance at 550- 600-C and that Fe/HZSM-5 catalysts were highly selective towards light olefins,especially the 9FZ sample.In addition,Fe-modified catalysts suppressed the conversion of ethanol to aromatics and paraffins and enhanced their anti-carbon deposit ability.展开更多
Catalytic conversion of bio-oil into light olefins was performed by a series of molecular sieve catalysts, including HZSM-5, MCM-41, SAPO-34 and Y-zeolite. Based on the light olefins yield and its carbon selectivity, ...Catalytic conversion of bio-oil into light olefins was performed by a series of molecular sieve catalysts, including HZSM-5, MCM-41, SAPO-34 and Y-zeolite. Based on the light olefins yield and its carbon selectivity, the production of light olefins decreased in the following order: HZSM-5〉SAPO-34〉MCM-41〉Y-zeolite. The highest olefins yield from bio-oil using HZSM- 5 catalyst reached 0.22 kg/kgbio-oil with carbon selectivity of 50.7% and a nearly complete bio-oil conversion. The reaction conditions and catalyst characterization were investigated in detail to reveal the relationship between the catalyst structure and the production of olefins. The comparison between the pyrolysis and catalytic pyrolysis of bio-oil was also performed.展开更多
Co2C‐based catalysts with SiO2,γ‐Al2O3,and carbon nanotubes(CNTs)as support materials were prepared and evaluated for the Fischer‐Tropsch to olefin(FTO)reaction.The combination of catalytic performance and structu...Co2C‐based catalysts with SiO2,γ‐Al2O3,and carbon nanotubes(CNTs)as support materials were prepared and evaluated for the Fischer‐Tropsch to olefin(FTO)reaction.The combination of catalytic performance and structure characterization indicates that the cobalt‐support interaction has a great influence on the Co2C morphology and catalytic performance.The CNT support facilitates the formation of a CoMn composite oxide during calcination,and Co2C nanoprisms were observed in the spent catalysts,resulting in a product distribution that greatly deviates from the classical Anderson‐Schulz‐Flory(ASF)distribution,where only 2.4 C%methane was generated.The Co3O4 phase for SiO2‐andγ‐Al2O3‐supported catalysts was observed in the calcined sample.After reduction,CoO,MnO,and low‐valence CoMn composite oxide were generated in theγ‐Al2O3‐supported sample,and both Co2C nanospheres and nanoprisms were identified in the corresponding spent catalyst.However,only separated phases of CoO and MnO were found in the reduced sample supported by SiO2,and Co2C nanospheres were detected in the spent catalyst without the evidence of any Co2C nanoprisms.The Co2C nanospheres led to a relatively high methane selectivity of 5.8 C%and 12.0 C%of theγ‐Al2O3‐and SiO2‐supported catalysts,respectively.These results suggest that a relatively weak cobalt‐support interaction is necessary for the formation of the CoMn composite oxide during calcination,which benefits the formation of Co2C nanoprisms with promising catalytic performance for the sustainable production of olefins via syngas.展开更多
Single-event microkinetic(SEMK) model of the catalytic cracking of methylcyclohexane admixed with 1-octene over REUSY zeolites at 693 K—753 K in the absence of coke formation is enhanced. To keep consistency with the...Single-event microkinetic(SEMK) model of the catalytic cracking of methylcyclohexane admixed with 1-octene over REUSY zeolites at 693 K—753 K in the absence of coke formation is enhanced. To keep consistency with the wellknown carbenium ion chemistry, hydride transfer forming and consuming allylic carbenium ions in the aromatization of cycloparaffins are further investigated and differentiated. The reversibility of endocyclic β-scission and cyclization reactions is refined by accounting explicitly for the reacting olefins and resulting cycloparaffins in the corresponding thermodynamics. 24 activation energies for the reactions involved in the cracking of cycloparaffins are obtained by the regression of 15 sets of experimental data upon taking the resulting 37 main cracking products, i. e., responses into account. The enhanced SEMK model can adequately describe the catalytic behavior of 37 main products with conversion and temperature.展开更多
A phosphite ligand modified heterogeneous catalyst was developed for the hydroformylation of internal olefins to linear aldehydes, which showed a high activity and high regioselectivity and could be separated easily b...A phosphite ligand modified heterogeneous catalyst was developed for the hydroformylation of internal olefins to linear aldehydes, which showed a high activity and high regioselectivity and could be separated easily by filtration after reaction in an autoclave. Three nanoporous silica sieves were used to investigate the influence of pore structure and shape selective performance of support on the regioselectivity to the linear products.展开更多
基金the financial support from the Strategic Priority Research Program of Chinese Academy of Sciences(XDA21010100)。
文摘Light olefins is the incredibly important materials in chemical industry.Methanol to olefins(MTO),which provides a non-oil route for light olefins production,received considerable attention in the past decades.However,the catalyst deactivation is an inevitable feature in MTO processes,and regeneration,therefore,is one of the key steps in industrial MTO processes.Traditionally the MTO catalyst is regenerated by removing the deposited coke via air combustion,which unavoidably transforms coke into carbon dioxide and reduces the carbon utilization efficiency.Recent study shows that the coke species over MTO catalyst can be regenerated via steam,which can promote the light olefins yield as the deactivated coke species can be essentially transferred to industrially useful synthesis gas,is a promising pathway for further MTO processes development.In this work,we modelled and analyzed these two MTO regeneration methods in terms of carbon utilization efficiency and technology economics.As shown,the steam regeneration could achieve a carbon utilization efficiency of 84.31%,compared to 74.74%for air combustion regeneration.The MTO processes using steam regeneration can essentially achieve the near-zero carbon emission.In addition,light olefins production of the MTO processes using steam regeneration is 12.81%higher than that using air combustion regeneration.In this regard,steam regeneration could be considered as a potential yet promising regeneration method for further MTO processes,showing not only great environmental benefits but also competitive economic performance.
基金financially supported by a research grant from the National Key Research and Development Program of China(2021YFA1501204)China Petroleum and Chemical Corporation(Sinopec Corp.),China(ST22001)。
文摘Light olefins are important organic building blocks in the chemicals industry.The main low-carbon olefin production methods,such as catalytic cracking and steam cracking,have considerable room for improvement in their utilization of hydrocarbons.This review provides a thorough overview of recent studies on catalytic cracking,steam cracking,and the conversion of crude oil processes.To maximize the production of light olefins and reduce carbon emissions,the perceived benefits of various technologies are examined.Taking olefin generation and conversion as a link to expand upstream and downstream processes,a targeted catalytic cracking to olefins(TCO)process is proposed to meet current demands for the transformation of oil refining into chemical production.The main innovations of this process include a multiple feedstock supply,the development of medium-sized catalysts,and a diameter-transformed fluidizedbed reactor with different feeding schemes.In combination with other chemical processes,TCO is expected to play a critical role in enabling petroleum refining and chemical processes to achieve low carbon dioxide emissions.
基金supported by the National Natural Science Foundation of China(21802138,21773234 and 22078315)the‘‘Transformational Technologies for Clean Energy and Demonstration’’,Strategic Priority Research Program of the Chinese Academy of Sciences(XDA 21090203)+3 种基金the Youth Innovation Promotion Association of Chinese Academy of Sciences(2020189)the Natural Science Foundation of Liaoning Province(2022-MS-027)the Youth Science and Technology Star Project Support Program of Dalian City(2021RQ123),DICP(Grant:DICP I202138)the University of Chinese Academy of Sciences(UCAS)for UCAS Scholarship。
文摘CO_(2)hydrogenation has been considered to be a highly promising route for the production of high-value olefins(HVOs)while also mitigating CO_(2)emissions.However,it is challenging to achieve high selectivity and maintain stable performance for HVOs(ethylene,propylene,and linear a-olefins)over a prolonged reaction time due to the difficulty in precise control of carbon coupling and rapid catalyst deactivation.Herein,we present a selective Ba and Na co-modified Fe catalyst enriched with Fe_(5)C_(2)and Fe_(3)C active sites that can boost HVO synthesis with up to 66.1%selectivity at an average CO_(2)conversion of 38%for over 500 h.Compared to traditional NaFe catalyst,the combined effect of Ba and Na additives in the NaBaFe-0.5 catalyst suppressed excess oxidation of FeCxsites by H_(2)O.The absence of Fe3O4phase in the spent NaBaFe-0.5 catalyst reflects the stabilization effect of the co-modifiers on the FeCxsites.This study provides a strategy to design Fe-based catalysts that can be scaled up for the stable synthesis of HVOs from CO_(2)hydrogenation.
基金supported by Program of China National Petroleum Corporation(2020B-20122022zS27)the General Program of National Natural Science Foundation of China(22178385).
文摘When converting C_(5) hydrocarbons to light olefins by catalytic pyrolysis,the generation of low value-added methane will affect the atomic utilization efficiency of C_(5) hydrocarbons.To improve the atomic utilization efficiency,different generation pathways of light olefins and methane in the catalytic pyrolysis of C_(5) hydrocarbons were analyzed,and the effects of reaction conditions and zeolite types were inves-tigated.Results showed that light olefins were mainly formed by breaking the C_(2)-C_(3) bond in the middle position,while methane was formed by breaking the C_(1)-C_(2) bond at the end.Meanwhile,it was discovered that the hydrogen transfer reaction could be reduced by about 90%by selecting MTT zeolite with 1D topology and FER zeolite with 2D topology under high weight hourly space velocity(WHSV)and high temperature operations,thus leading to the improvement of the light olefins selectivity for the catalytic pyrolysis of n-pentane and 1-pentene to 55.12% and 74.60%,respectively.Moreover,the fraction ratio of terminal C_(1)-C_(2) bond cleavage was reduced,which would reduce the selectivity of methane to 6.63%and 1.83%.Therefore,zeolite with low hydrogen transfer activity and catalytic pyrolysis process with high WHsV will be conducive to maximize light olefins and to decrease methane.
基金supported by Natural Science Foundation of Jiangsu Province(BK20210185)National Natural Science Foundation of China(21776122)。
文摘Selective epoxidation of olefins is an important field in chemical industry.In this work,we developed a new phosphotungstic acid catalyst{[(C_8H_(17))(CH_(3))_(2)N]_(2)(CH_(2))_(3)}_(1.5){PO_(4)[WO(O_(2))_(2)]_(4)}with long carbon chain and biquaternary ammonium cation.Cyclohexene could be epoxidized to cyclohexene oxide in 96.3%conversion and 98.2%selectivity.The catalyst type,solvent type,catalyst loading,initial molar ratio,temperature,cycle performance and substrate extensibility were studied and optimized,the kinetic parameters about overall reaction and unit reaction were also calculated.Dynamic light scattering analysis was carried out to explain the different catalytic performance between catalysts with different carbon chain length.This novel catalyst and the corresponding dynamics and mechanism study could probably help the industrial application on the epoxidation of cyclohexene with H_(2)O_(2).
基金supported by the Key Project of Natural Science Foundation of Ningxia(NZ13010)the National Natural Science Foundation of China(21366025)~~
文摘Fe‐based catalysts for the production of light olefins via the Fischer‐Tropsch synthesis were modi‐fied by adding a Zn promoter using both microwave‐hydrothermal and impregnation methods. The physicochemical properties of the resulting catalysts were determined by scanning electron mi‐croscopy, the Brunauer‐Emmett‐Teller method, X‐ray diffraction, H2 temperature‐programed re‐duction and X‐ray photoelectron spectroscopy. The results demonstrate that the addition of a Zn promoter improves both the light olefin selectivity over the catalyst and the catalyst stability. The catalysts prepared via the impregnation method, which contain greater quantities of surface ZnO, exhibit severe carbon deposition following activity trials. In contrast, those materials synthesized using the microwave‐hydrothermal approach show improved dispersion of Zn and Fe phases and decreased carbon deposition, and so exhibit better CO conversion and stability.
基金ACKNOWLEDGM ENTS This work was supported by the National Natural Science Foundation of China (No.51006110, No.51276183, and No.51036006), the National Natural Research Foundation of China/Japan Science and Technology Agency (No.51161140331), and National Key Basic Research Program 973 Project Founded by MOST of China (No.2013CB228105).
文摘NiSAPO-34 and NiSAPO-34/HZSM-5 were prepared and evaluated for the performance of dimethyl ether (DME) conversion to light olefins (DTO). The processes of two-stage light olefin production, DME synthesis and the following DTO, were also investigated using biosyngas as feed gas over Cu/Zn/A1/HZSM-5 and the optimized 2%NiSAPO-34/HZSM- 5. The results indicated that adding 2%Ni to SAPO-34 did not change its topology structure, but resulted in the forming of the moderately strong acidity with decreasing acid amounts, which slightly enhanced DME conversion activity and C2=-C3= selectiw ity. Mechanically mixing 2%NiSAPO-34 with HZSM-5 at the weight ratio of 3.0 further prolonged DME conversion activity to be more than 3 h, which was due to the stable acid sites from HZSM-5. The highest selectivity to light olefins of 90.8% was achieved at 2 h time on stream. The application of the optimized 2%NiSAPO-34/HZSM-5 in the second-stage reactor for DTO reaction showed that the catalytic activity was steady for more than 5 h and light olefin yield was as high as 84.6 g/m3syngas when the biosyngas (H2/CO/CO2/N2/CH4=41.5/26.9/14.2/14.6/2.89, vol%) with low H/C ratio of 1.0 was used as feed gas.
基金This work is supported by the National Key Basic Program of China (No.2013CB228105) and the National Natural Science Foundation of China (No.51161140331).
文摘Low-carbon light olefins are the basic feedstocks for the petrochemical industry. Catalytic cracking of crude bio-oil and its model compounds (including methanol, ethanol, acetic acid, acetone, and phenol) to light olefins were performed by using the La/HZSM-5 catalyst. The highest olefins yield from crude bio-oil reached 0.19 kg/(kg crude bio-oil). The reaction conditions including temperature, weight hourly space velocity, and addition of La into the HZSM-5 zeolite can be used to control both olefins yield and selectivity. Moderate adjusting the acidity with a suitable ratio between the strong acid and weak acid sites through adding La to the zeolite effectively enhanced the olefins selectivity and improved the catalyst stability. The production of light olefins from crude bio-oil is closely associated with the chemical composition and hydrogen to carbon effective ratios of feedstock. The comparison between the catalytic cracking and pyrolysis of bio-oil was studied. The mechanism of the bio-oil conversion to light olefins was also discussed.
基金supported by the National Key Basic Research Development Program of China (NO: 2006CB202503)
文摘The modified Ce-SAPO-34 catalysts were prepared with three methods, i.e., the liquid ion exchange with air calcination, impregnation with air calcination and impregnation with steam calcination methods. The catalytic performances of the catalysts for methanol to olefins were investigated. The properties of the catalysts were characterized using XRD, BET, XRF, FT-IR and NH3-TPD. The results indicated that compared to the SAPO-34 catalyst the catalyst prepared with the impregnation and air calcination prolonged the lifetime by 40 min and improved the selectivity to ethylene by 5% (mol) and the catalyst prepared with the impregnation and steam calcination showed the best modification effect, prolonging the lifetime by 70 min and improving the ethylene selectivity by 10% (mol). The catalyst prepared with the liquid ion exchange showed similar behaviour as the SAPO-34 catalyst. It was verified that the porous structure and surface acidity of these catalysts determined their catalytic behaviors.
基金supported by the Natural Science Foundation of China (21306046)the Open Project of State Key Laboratory of Chemical Engineering (SKL-Che-15C03)+2 种基金the Fundamental Research Funds for the Central Universities (WA1514013)the 111 Project of Ministry of Education of China (B08021)supported by the China Scholarship Council (CSC) for the research at Norwegian University of Science and Technology (NTNU)
基金supported by the Research Fund from the China Petroleum & Chemical Corporation (Grant No.305025)the National High Technology Research and Development Program of Hainan under Grant No.509013
文摘ZSM-5 zeolite catalyst modified by a trace of metal cations shows high activity and high selectivity for the reaction of methanol to olefins (MTO), but it inclines to deactivate during the reaction. In this paper, the mechanism of the catalyst deactivation and the regeneration method were studied by X-ray diffraction (XRD), N2 adsorption-desorption, infrared spectra (IR), and infrared spectra coupled with NH3 molecular probes (IR-NH3). These characterizations indicated that coke formation was the main reason for the catalyst deactivation. To regenerate the deactivated catalyst, two methods, i.e., calcination and methanol leaching, were used. N2 adsorption-desorption, IR and IR-NH3 characteriza-tions showed that both methods can eliminate coke deposited on the catalyst and make the catalyst reactivated. XRD showed that the structure of the catalyst did not change after regeneration. Interestingly, the regenerated catalyst even showed better catalytic performance of the MTO reaction than the fresh one. Besides, the calcination regeneration can eliminate coke more completely, however, the methanol leaching method can be more easily carried out in situ in the reactor.
文摘Directly making light olefins via CO hydrogenation is a promising process toobtain a non-petroleum based supply of alkenes. Limited by the ASF distribution function ofFischer-Tropsch synthesis, the yield of light olefins (C_2-C_4) can not reach the desired levels,which is a great challenge to overcome. Beginning with a brief introduction of F-T synthesis, thispaper provides a review of current research, including thermodynamic analysis, the ASF distributionfunction, the reaction performance of CO hydrogenation and slurry reactor studies. The problemscurrently faced by this research area are presented at the end of the article.
基金supported by the International Center for Science, High Technology & Environmental Sciences
文摘Cobalt-manganese nano catalysts were prepared by sol-gel method. This research investigated the effects of different cobalt-manganese (Co/Mn = 1/1) loading, pH and calcination conditions on the catalytic performance of Co-Mn/TiO2 catalysts for Fischer-Tropsch synthesis (FTS) in a fixed bed reactor. It was found that the catalyst containing 30wt%(Co-Mn)/TiO2 was an optimal catalyst for the conversion of synthesis gas to light olefins especially propylene. The activity and selectivity of optimal catalyst were studied under different operational conditions. The results showed that the best operational conditions were H2/CO = 1/1 molar feed ratio at 250 ℃ and GHSV = 1300 h-1 un- der atmospheric pressure. Characterization of catalysts was carried out by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption-desorlation measurements.
基金supported by a Post Doc grant of the German Academic Exchange Service(Deutscher Akademischer Austauschdienst,DAAD grant no.91552012)by the European Research Council(EU FP7 ERC advanced grant no.338846)
文摘The Fischer–Tropsch to olefins(FTO) process is a method for the direct conversion of synthesis gas to lower C–Colefins. Carbon-supported iron carbide nanoparticles are attractive catalysts for this reaction.The catalytic activity can be improved and undesired formation of alkanes can be suppressed by the addition of sodium and sulfur as promoters but the influence of their content and ratio remains poorly understood and the promoted catalysts often suffer from rapid deactivation due to particle growth. A series of carbon black-supported iron catalysts with similar iron content and nominal sodium/sulfur loadings of 1–30/0.5–5 wt% with respect to iron are prepared and characterized under FTO conditions at 1and 10 bar syngas pressure to illuminate the influence of the promoter level on the catalytic properties.Iron particles and promoters undergo significant reorganization during FTO operation under industrially relevant conditions. Low sodium content(1–3 wt%) leads to a delay in iron carbide formation. Sodium contents of 15–30 wt% lead to rapid loss of catalytic activity due to the covering of the iron surface with promoters during particle growth under FTO operation. Higher activity and slower loss of activity are observed at low promoter contents(1–3 wt% sodium and 0.5–1 wt% sulfur) but a minimum amount of alkali is required to effectively suppress methane and C–Cparaffin formation. A reference catalyst support(carbide-derived carbon aerogel) shows that the optimum promoter level depends on iron particle size and support pore structure.
基金supported by the National Natural Science Foundation of China(No.20963010)the Doctor Fund of Science Research(No.070267)
文摘A series of Fe/HZSM-5 catalysts with different iron loadings were prepared by impregnation method.Characterization was performed by N2 adsorption-desorption,X-ray diffraction(XRD),NH3 temperature-programmed desorption(NH3-TPD),temperature-programmed reduction (TPR),temperature-programmed oxidation(TPO)and thermogravimetry(TG)analysis.Iron content in the synthesized samples varied from 1.1 wt%to 20 wt%.The obtained samples have been used for ethanol conversion into light olefins.It was found that the amount of strong acidity at 300 -5 50-C on Fe-modified samples was decreased,going with another new acid site appearance at 550- 600-C and that Fe/HZSM-5 catalysts were highly selective towards light olefins,especially the 9FZ sample.In addition,Fe-modified catalysts suppressed the conversion of ethanol to aromatics and paraffins and enhanced their anti-carbon deposit ability.
基金V. ACKNOWLEDGEMENTS This work was supported by the National Natural Science Foundation of China (No.51161140331) and the National High Technology Research and Development of Ministry of Science and Technology of China (No.2009AA05Z435).
文摘Catalytic conversion of bio-oil into light olefins was performed by a series of molecular sieve catalysts, including HZSM-5, MCM-41, SAPO-34 and Y-zeolite. Based on the light olefins yield and its carbon selectivity, the production of light olefins decreased in the following order: HZSM-5〉SAPO-34〉MCM-41〉Y-zeolite. The highest olefins yield from bio-oil using HZSM- 5 catalyst reached 0.22 kg/kgbio-oil with carbon selectivity of 50.7% and a nearly complete bio-oil conversion. The reaction conditions and catalyst characterization were investigated in detail to reveal the relationship between the catalyst structure and the production of olefins. The comparison between the pyrolysis and catalytic pyrolysis of bio-oil was also performed.
文摘Co2C‐based catalysts with SiO2,γ‐Al2O3,and carbon nanotubes(CNTs)as support materials were prepared and evaluated for the Fischer‐Tropsch to olefin(FTO)reaction.The combination of catalytic performance and structure characterization indicates that the cobalt‐support interaction has a great influence on the Co2C morphology and catalytic performance.The CNT support facilitates the formation of a CoMn composite oxide during calcination,and Co2C nanoprisms were observed in the spent catalysts,resulting in a product distribution that greatly deviates from the classical Anderson‐Schulz‐Flory(ASF)distribution,where only 2.4 C%methane was generated.The Co3O4 phase for SiO2‐andγ‐Al2O3‐supported catalysts was observed in the calcined sample.After reduction,CoO,MnO,and low‐valence CoMn composite oxide were generated in theγ‐Al2O3‐supported sample,and both Co2C nanospheres and nanoprisms were identified in the corresponding spent catalyst.However,only separated phases of CoO and MnO were found in the reduced sample supported by SiO2,and Co2C nanospheres were detected in the spent catalyst without the evidence of any Co2C nanoprisms.The Co2C nanospheres led to a relatively high methane selectivity of 5.8 C%and 12.0 C%of theγ‐Al2O3‐and SiO2‐supported catalysts,respectively.These results suggest that a relatively weak cobalt‐support interaction is necessary for the formation of the CoMn composite oxide during calcination,which benefits the formation of Co2C nanoprisms with promising catalytic performance for the sustainable production of olefins via syngas.
基金financial support from the China Scholarship Councilthe Long Term Structural Methusalem Funding by the Flemish Government
文摘Single-event microkinetic(SEMK) model of the catalytic cracking of methylcyclohexane admixed with 1-octene over REUSY zeolites at 693 K—753 K in the absence of coke formation is enhanced. To keep consistency with the wellknown carbenium ion chemistry, hydride transfer forming and consuming allylic carbenium ions in the aromatization of cycloparaffins are further investigated and differentiated. The reversibility of endocyclic β-scission and cyclization reactions is refined by accounting explicitly for the reacting olefins and resulting cycloparaffins in the corresponding thermodynamics. 24 activation energies for the reactions involved in the cracking of cycloparaffins are obtained by the regression of 15 sets of experimental data upon taking the resulting 37 main cracking products, i. e., responses into account. The enhanced SEMK model can adequately describe the catalytic behavior of 37 main products with conversion and temperature.
基金Supported by the Ministry of Science and Technology of China(No.2009CB623503)
文摘A phosphite ligand modified heterogeneous catalyst was developed for the hydroformylation of internal olefins to linear aldehydes, which showed a high activity and high regioselectivity and could be separated easily by filtration after reaction in an autoclave. Three nanoporous silica sieves were used to investigate the influence of pore structure and shape selective performance of support on the regioselectivity to the linear products.