Diabetes is one of the most difficult chronic diseases to cure in the world,which seriously affects people’s health and quality of life.Flavonoids in buckwheat can regulate blood glucose levels by inhibitingα-amylas...Diabetes is one of the most difficult chronic diseases to cure in the world,which seriously affects people’s health and quality of life.Flavonoids in buckwheat can regulate blood glucose levels by inhibitingα-amylase activity.Therefore,sweet buckwheat produced in Inner Mongolia was used as the research object,and buckwheat fl avonoids were extracted by ultrasonic-assisted extraction method.Total fl avonoids content was determined by ultraviolet-visible spectrophotometry.With acarbose as the positive control,the inhibition test ofα-amylase was carried out by DNS colorimetry to study the inhibition behavior of fl avonoids onα-amylase activity.The results showed that the extraction process of flavonoids was stable and reliable,and the established method for the determination of flavonoids was simple,accurate and reproducible.The total flavonoids content of buckwheat samples was 2.706 mg/g,buckwheat total fl avonoids extraction solution had an inhibitory eff ect onα-amylase,and its median inhibition concentration(IC_(50))was 38.53 mg/mL.The results of this experiment provide a technical reference for the development and utilization of fl avonoids in Inner Mongolia sweet buckwheat,and provide a theoretical reference for the development and application of flavonoid-rich hypoglycemic food.展开更多
[Objective]The aim was to clarify the chemical substance basis of hypoglycemic and lipid-lowering effects of Pu-erh Tea. [Method]Pu-erh Tea was extracted with 95% ethanol,followed by petroleum ether,chloroform,ethyl a...[Objective]The aim was to clarify the chemical substance basis of hypoglycemic and lipid-lowering effects of Pu-erh Tea. [Method]Pu-erh Tea was extracted with 95% ethanol,followed by petroleum ether,chloroform,ethyl acetate and n-butanol extraction,after the further purification and through the NKA-9 macroporous resin and many times of Sephadex column chromatography,two compounds were isolated,in the same time,the effect of Uracil and Gallic acid on α-amylase was studied. [Result]The Uracil and Gallic acid were isolated and identified respectively from Pu-erh Tea and the Uracil was firstly isolated from Pu-erh Tea; Gallic acid had strong inhibition on α-amylase. [Conclusion]It could provide some theories on the hypoglycemic and lipid-lowering effects of Pu-erh Tea.展开更多
Red rice(Oryza punctata) is a type of unpolished rice which has higher nutritional value compared to white rice or even polished rice. Owing to higher nutritive content and metabolites, dieticians strongly advise red ...Red rice(Oryza punctata) is a type of unpolished rice which has higher nutritional value compared to white rice or even polished rice. Owing to higher nutritive content and metabolites, dieticians strongly advise red rice for peoples with metabolic disorders including diabetics. However, the mechanism of action and contents of secondary metabolites in Indian red rice variety not reported scientifically. Therefore, the present study aimed to evaluate its mechanism of action through inhibitory effect of α-amylase and α-glucosidase. Initially, the whole grain of red rice was macerated with methanol at room temperature for 2 weeks. Then, the dried and powdered, samples at different concentrationfi(2.5, 10, 40, and 80 μg/m L) were employed to nd out in vitro inhibitory effects on α-amylase and α-glucosidase. In addition, an enzyme kinetics of effective extract was calculated by Line-weaver Burk(LWB) plot analysis. Moreover,the valuable metabolites in the efficient methanolic extract were quantified using high performance liquid chromatography(HPLC). The results demonstrated that red rice methanolic extract(RRMEt) possess strong inhibitory activity onα-amylase and α-glucosidase compared with acarbose(P < 0.01). The IC50 values of RRMEt was found to be 29.7 ±7.43 μg/m L for α-amylase and 20.4 ± 0.25 μg/m L for α-glucosidase. LWB indicated that RRMEt is an uncompetitive inhibitor. Further, HPLC analysis revealed protocatechuic acid, catechin, and chlorogenic acids were more abundant in RRMEt among the fourteen metabolites. We conclude, the efficiency of enzyme inhibition through the influence of phenolic compounds in RRMEt.展开更多
Objective:To investigate the inhibitory effect of Telfairia occidentalis Hook f.(Curcubitaceae)(T.occidentalis)leaf on key enzyme linked to type-2 diabetes(α-amylase andα-glucosidase)as well as assess the effect of ...Objective:To investigate the inhibitory effect of Telfairia occidentalis Hook f.(Curcubitaceae)(T.occidentalis)leaf on key enzyme linked to type-2 diabetes(α-amylase andα-glucosidase)as well as assess the effect of blanching(a commonly practiced food processing technique)of the vegetable on these key enzymes.Methods:Fresh leaves of T.occidentalis were blanched in hot water for 10 minutes,and the extracts of both the fresh and blanched vegetables were prepared and used for subsequent analysis.The inhibitory effect of the extract onα-amylase andα-glucosidase activities as well as some antioxidant parameter was determined in vitro.Results:The result revealed that unprocessed T.occidentalis leaf reduce Fe^(3+)to Fe^(2+)and also inhibitedα-amylase andα-glucosidase activities in a dose dependent manner.However,blanching of the leafy vegetables caused a significant(P<0.05)increase in the antioxidant properties but decrease their ability to inhibitα-amylase andα-glucosidase activities.Conclusions:This antioxidant properties and enzyme inhibition could be part of the mechanism by which they are used in the treatment/prevention of type-2 diabetes.However,the blanched vegetable reduces their ability to inhibit bothα-amylase andα-glucosidase activity in vitro.展开更多
The study was to investigate the changes of α-amylase inhibitor content in Pu-erh tea during pile-fermentation process. Pu-erh tea samples from two regions of Shuangjiang County and Jinggu Dai and Yi Autonomous Count...The study was to investigate the changes of α-amylase inhibitor content in Pu-erh tea during pile-fermentation process. Pu-erh tea samples from two regions of Shuangjiang County and Jinggu Dai and Yi Autonomous County of Yunnan Province at various fermentation stages were used as experimental materials to investigate the effect of different fermentation stages on the inhibitory effect to α-amylase; and the change law of the inhibitory effect of c-amylase inhibitor during processing was meanwhile studied by determining the contents of tea polyphenol and amino acid. The results showed that crude meterial of Pu-erh tea presented strong inhibitory effect to α-amylase; this inhibitory effect assumed a de: creasing trend to the minimum at the middle stage of fermentation, whereafter it increased to some extent. Made tea also showed a strong inhibitory effect to α-amylase. During whole processing period, contents of tea polyphenol and amino acid generally assumed a remarkably decreasing trend. Our results provided references for further isolating co-amylase inhibitor from Pu-erh tea and discussing the mechanism of its health care function.展开更多
Bacillus thuringiensis(Bt)cotton production is challenged by two main problems,i.e.,the low concentration of Bt protein at the boll setting stage and the lowest insect resistance in bolls among all the cotton plant’s...Bacillus thuringiensis(Bt)cotton production is challenged by two main problems,i.e.,the low concentration of Bt protein at the boll setting stage and the lowest insect resistance in bolls among all the cotton plant’s organs.Therefore,increasing the Bt protein concentration at the boll stage,especially in bolls,has become the main goal for increasing insect resistance in cotton.In this study,two protein degradation inhibitors(ethylene diamine tetra acetic acid(EDTA)and leupeptin)were sprayed on the bolls,subtending leaves,and whole cotton plants at the peak flowering stage of two Bt cultivars(medium maturation Sikang 1(SK1))and early maturation Zhongmian 425(ZM425)in 2019 and 2020.The Bt protein content and protein degradation metabolism were assessed.The results showed that the Bt protein concentrations were enhanced by 21.3 to 38.8%and 25.0 to 38.6%in the treated bolls of SK1 and ZM425 respectively,while they were decreased in the subtending leaves of these treated bolls.In the treated leaves,the Bt protein concentrations increased by 7.6 to 23.5%and 11.2 to 14.9%in SK1 and ZM425,respectively.The combined application of EDTA and leupeptin to the whole cotton plant increased the Bt protein concentrations in both bolls and subtending leaves.The Bt protein concentrations in bolls were higher,increasing by 22.5 to 31.0%and 19.6 to 32.5%for SK1 and ZM425,respectively.The organs treated with EDTA or/and leupeptin showed reduced free amino acid contents,protease and peptidase activities and significant enhancements in soluble protein contents.These results indicated that inhibiting protein degradation could improve the protein content,thus increasing the Bt protein concentrations in the bolls or/and leaves of cotton plants.Therefore,the increase in the Bt protein concentration without yield reduction suggested that these two protein degradation inhibitors may be applicable for improving insect resistance in cotton production.展开更多
Manganese-based material is a prospective cathode material for aqueous zinc ion batteries(ZIBs)by virtue of its high theoretical capacity,high operating voltage,and low price.However,the manganese dissolution during t...Manganese-based material is a prospective cathode material for aqueous zinc ion batteries(ZIBs)by virtue of its high theoretical capacity,high operating voltage,and low price.However,the manganese dissolution during the electrochemical reaction causes its electrochemical cycling stability to be undesirable.In this work,heterointerface engineering-induced oxygen defects are introduced into heterostructure MnO_(2)(δa-MnO_(2))by in situ electrochemical activation to inhibit manganese dissolution for aqueous zinc ion batteries.Meanwhile,the heterointerface between the disordered amorphous and the crystalline MnO_(2)ofδa-MnO_(2)is decisive for the formation of oxygen defects.And the experimental results indicate that the manganese dissolution ofδa-MnO_(2)is considerably inhibited during the charge/discharge cycle.Theoretical analysis indicates that the oxygen defect regulates the electronic and band structure and the Mn-O bonding state of the electrode material,thereby promoting electron transport kinetics as well as inhibiting Mn dissolution.Consequently,the capacity ofδa-MnO_(2)does not degrade after 100 cycles at a current density of 0.5 Ag^(-1)and also 91%capacity retention after 500cycles at 1 Ag^(-1).This study provides a promising insight into the development of high-performance manganese-based cathode materials through a facile and low-cost strategy.展开更多
Nitrification,a central process in the marine nitrogen cycle,produces regenerated nitrate in the euphotic zone and emits N_(2)O,a potent greenhouse gas as a by-product.The regulatory mechanisms of nitrification in the...Nitrification,a central process in the marine nitrogen cycle,produces regenerated nitrate in the euphotic zone and emits N_(2)O,a potent greenhouse gas as a by-product.The regulatory mechanisms of nitrification in the Southern Ocean,which is a critical region for CO_(2)sequestration and radiative benefits,remain poorly understood.Here,we investigated the in situ and dark nitrification rates in the upper 500 m and conducted substrate kinetics experiments across the Indian Sector in the Cosmonaut and Cooperation seas in the late austral summer.Our findings indicate that light inhibition of nitrification decreases exponentially with depth,exhibiting a light threshold of 0.53%photosynthetically active radiation.A positive relationship between dark nitrification and apparent oxygen utilization suggests a dependence on substrate availability from primary production.Importantly,an increased NH_(4)^(+) supply can act as a buffer against photo-inhibitory damage.Globally,substrate affinity(α)increases with depth and transitions from light to dark,decreases with increasing ambient NH_(4)^(+)and exhibits a latitudinal distribution,reflecting substrate utilization strategies.We also reveal that upwelling in Circumpolar Deep Water(CDW)stimulates nitrification through the introduction of potentially higher iron and deep diverse nitrifying microorganisms with higherα.We conclude that although light is the primary limiting factor for nitrification in summer,coupling between substrate availability and CDW upwelling can overcome this limitation,thereby alleviating photoinhibition by up to 45%±5.3%.展开更多
Objective:To investigate the therapeutic effects of methanol extract of Citrus macroptera Montr,fruit inα-amylase inhibitory activity(in vitro)and hypoglycemic activity in normal and glucose induced hyperglycemic rat...Objective:To investigate the therapeutic effects of methanol extract of Citrus macroptera Montr,fruit inα-amylase inhibitory activity(in vitro)and hypoglycemic activity in normal and glucose induced hyperglycemic rats(in vivo).Methods:Fruits of Citrus macroptera without rind was extracted with pure methanol following cold extraction and tested for presence of phytochemical constituents,α-amylase inhibitory activity,and hypoglycemic effect in normal rats and glucose induced hyperglycemic rats.Results:Presence of saponin,steroid and terpenoid were identified in the extract.The results showed that fruit extract had moderateα-amylase inhibitory activity[IC_(50)value=(3.638±0.190)mg/mL]as compared to acarbose.Moreover at 500 mg/kg and 1000 mg/kg doses fruit extract significantly(P<0.05 and P<0.01 respectively)reduced fasting blood glucose level in normal rats as compared to glibenclamide(5 mg/kg).In oral glucose tolerance test,500 mg/kg dose significantly reduced blood glucose level(P<0.05)at 2 h but 1000 mg/kg dose significantly reduced blood glucose level at 2 h and 3 h(P<0.05 and P<0.01 respectively)whereas glibenclamide(5 mg/kg)significantly reduced glucose level at every hour after administration.Overall time effect is also considered extremely significant with F value=23.83 and P value=0.0001 in oral glucose tolerance test.Conclusion:These findings suggest that the plant may be a potential source for the development of new oral hypoglycemic agent.展开更多
The objective of this study was to characterize the phaseolin type and a-amylase(αAI) level in common bean(Phaseolus vidgaris L.) accessions deposited in the Chinese National Genebank.The 40 accessions sampled were c...The objective of this study was to characterize the phaseolin type and a-amylase(αAI) level in common bean(Phaseolus vidgaris L.) accessions deposited in the Chinese National Genebank.The 40 accessions sampled were common varieties originating in Asia,North America,South America,Europe,and Africa.No Inca(I-) phaseolin was observed in the accessions.Only four accessions contained Tendergreen(T-) phaseolin and the remaining36 contained Sanilac(S-) phaseolin.aAI proteins extracted from nine accessions showed higher a-amylase inhibitory activity than the control(Phase 2,IC_(50) = 0.65 μg).These common bean accessions have potential use as nutraceutical ingredients.展开更多
Ginseng(Panax ginseng C.A.Meyer)as a common dietary adjunct is widely applied in Traditional Chinese Medicine due to its health-promoting properties,but the differences between white ginseng and red ginseng was rarely...Ginseng(Panax ginseng C.A.Meyer)as a common dietary adjunct is widely applied in Traditional Chinese Medicine due to its health-promoting properties,but the differences between white ginseng and red ginseng was rarely studied.In the present study,color parameters and scanning electron microscope(SEM)were determined to evaluate the differences of ginseng color and microstructure induced by processing procedure.Quantitative analysis of multi-components by a single-marker(QAMS)method and anti-α-amylase activity test were used to assess variations of chemical ingredients and pharmacological activity between white and red ginseng.Finally,molecular docking studies were carried out to screen out the most effective compound againstα-amylase.Results indicated that processing had a significant impact on the physicochemical properties and pharmacological activity of white and red ginseng.After processing,the color value of L*declined significantly.Red ginseng sample displayed a compact structure and presented of a gel layer on the surface compared to white ginseng.Additionally,the content of ginsenosides and the activity of anti-α-amylase decreased.The contents of total ginsenosides were positively correlated with the anti-α-amylase activities of ginseng,and ginsenoside Rb1 might be the most effective compound to inhibit the activity ofα-amylase.展开更多
Zinc(Zn)-air batteries are widely used in secondary battery research owing to their high theoretical energy density,good electrochemical reversibility,stable discharge performance,and low cost of the anode active mate...Zinc(Zn)-air batteries are widely used in secondary battery research owing to their high theoretical energy density,good electrochemical reversibility,stable discharge performance,and low cost of the anode active material Zn.However,the Zn anode also leads to many challenges,including dendrite growth,deformation,and hydrogen precipitation self-corrosion.In this context,Zn dendrite growth has a greater impact on the cycle lives.In this dissertation,a dendrite growth model for a Zn-air battery was established based on electrochemical phase field theory,and the effects of the charging time,anisotropy strength,and electrolyte temperature on the morphology and growth height of Zn dendrites were studied.A series of experiments was designed with different gradient influencing factors in subsequent experiments to verify the theoretical simulations,including elevated electrolyte temperatures,flowing electrolytes,and pulsed charging.The simulation results show that the growth of Zn dendrites is controlled mainly by diffusion and mass transfer processes,whereas the electrolyte temperature,flow rate,and interfacial energy anisotropy intensity are the main factors.The experimental results show that an optimal electrolyte temperature of 343.15 K,an optimal electrolyte flow rate of 40 ml·min^(-1),and an effective pulse charging mode.展开更多
This article provides commentary on the article by Zhang et al.In this original research,Zhang et al investigated the therapeutic potential of teneligliptin for diabetic cardiomyopathy(DCM),which was mediated by targe...This article provides commentary on the article by Zhang et al.In this original research,Zhang et al investigated the therapeutic potential of teneligliptin for diabetic cardiomyopathy(DCM),which was mediated by targeting the NOD-like receptor protein 3(NLRP3)inflammasome.Through the use of both in vivo and in vitro models,the study demonstrated that teneligliptin alleviates cardiac hyper-trophy,reduces myocardial injury,and mitigates the inflammatory responses as-sociated with DCM.These findings suggest that teneligliptin’s cardioprotective effects are mediated through the inhibition of NLRP3 inflammasome activation,positioning it as a promising therapeutic option for managing DCM in diabetic patients.展开更多
[Objectives]To fully understand the quality of commercial enzyme inhibition-colorimetric pesticide residue rapid detection kits,so that they can play a greater role in the detection and supervision of agricultural pro...[Objectives]To fully understand the quality of commercial enzyme inhibition-colorimetric pesticide residue rapid detection kits,so that they can play a greater role in the detection and supervision of agricultural products.[Methods]The sensitivity of 28 kinds of pesticides was determined by using the commercially available enzyme inhibition colorimetric rapid detection kit with Hendu brand.[Results]There was a significant difference in the sensitivity of the kit to each pesticide,and the kit was more sensitive to dichlorvos among the 28 pesticides tested.The sensitivity to methyl isosalifos,dimethoate,isocarbophos,fenthion and phorate was poor,and the sensitivity to quinalphos was different between 3.0 and 2.5 mL.[Conclusions]The large difference of the sensitivity of the enzyme inhibition-colorimetric rapid detection kit for pesticide residues to different kits is a reason for the false positive and false negative test results of the kit,which needs to be considered by relevant personnel.展开更多
Dysregulation of G9a,a histone-lysine N-methyltransferase,has been observed in Alzheimer’s disease and has been correlated with increased levels of chronic inflammation and oxidative stress.Likewise,microRNAs are inv...Dysregulation of G9a,a histone-lysine N-methyltransferase,has been observed in Alzheimer’s disease and has been correlated with increased levels of chronic inflammation and oxidative stress.Likewise,microRNAs are involved in many biological processes and diseases playing a key role in pathogenesis,especially in multifactorial diseases such as Alzheimer’s disease.Therefore,our aim has been to provide partial insights into the interconnection between G9a,microRNAs,oxidative stress,and neuroinflammation.To better understand the biology of G9a,we compared the global microRNA expression between senescence-accelerated mouse-prone 8(SAMP8)control mice and SAMP8 treated with G9a inhibitor UNC0642.We found a downregulation of miR-128 after a G9a inhibition treatment,which interestingly binds to the 3′untranslated region(3′-UTR)of peroxisome-proliferator activator receptor γ(PPARG)mRNA.Accordingly,Pparg gene expression levels were higher in the SAMP8 group treated with G9a inhibitor than in the SAMP8 control group.We also observed modulation of oxidative stress responses might be mainly driven Pparg after G9a inhibitor.To confirm these antioxidant effects,we treated primary neuron cell cultures with hydrogen peroxide as an oxidative insult.In this setting,treatment with G9a inhibitor increases both cell survival and antioxidant enzymes.Moreover,up-regulation of PPARγby G9a inhibitor could also increase the expression of genes involved in DNA damage responses and apoptosis.In addition,we also described that the PPARγ/AMPK axis partially explains the regulation of autophagy markers expression.Finally,PPARγ/GADD45αpotentially contributes to enhancing synaptic plasticity and neurogenesis after G9a inhibition.Altogether,we propose that pharmacological inhibition of G9a leads to a neuroprotective effect that could be due,at least in part,by the modulation of PPARγ-dependent pathways by miR-128.展开更多
Honey has long been considered a wound treatment used to keep cuts and other epidermal injuries clean. This study tested that claim by comparing manuka honey used in medicine today, local unprocessed honey taken strai...Honey has long been considered a wound treatment used to keep cuts and other epidermal injuries clean. This study tested that claim by comparing manuka honey used in medicine today, local unprocessed honey taken straight from a hive, and pasteurized honey found at a store, on strains of E. coli and S. epidermidis. The study evaluated the effects these honeys had on bacterial growth to determine which had the greatest inhibition of bacterial growth. To determine this, plates streaked with strains of E. coli or S. epidermidis bacteria and agar wells filled with one of the honeys were incubated and subsequently the diameter of the zone of inhibition was measured. After 20 trials using each honey and bacteria type, manuka and unprocessed were shown to have a statistically significant advantage over the pasteurized honey at inhibiting the growth of E. coli and S. epidermidis, though it was variable whether manuka had an advantage over the unprocessed honey.展开更多
In this study we used a chemical solution method from oxalic acid (OX. acid) and zinc acetate (ZnAc) to prepare Zinc Oxide nanoparticles (ZnONPs) and Zinc Oxide nanoparticles doped with Chlorine (Cl:ZnONPs). The chara...In this study we used a chemical solution method from oxalic acid (OX. acid) and zinc acetate (ZnAc) to prepare Zinc Oxide nanoparticles (ZnONPs) and Zinc Oxide nanoparticles doped with Chlorine (Cl:ZnONPs). The characterizations (FTIR, X-ray, SEM, TEM) of ZnONPs and Cl:ZnONPs were determined. Amylase inhibitors of ZnONPs and Cl:ZnONPs also were determined. SEM indicated that the ZnONPs and Cl:ZnONPs have an average particle size of 46.65 - 74.64 nm. TEM images of the ZnONPs and Cl:ZnONPs showed the round shaped. Compounds b,<span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">d and e exhibited significant inhibitory activity against amylase enzyme</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">(from 69.21</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">±</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">1.44 to 76.32</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">±</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">0.78), respectively, and were comparable with that of acarbose (86.32 ± 0.63) at 1000</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">μg, thereby, projecting ZnONPs and Cl:ZnONPs as </span><i><span style="font-family:Verdana;">α</span></i><span style="font-family:Verdana;">-amylase inhibitors.</span></span></span></span>展开更多
High-efficiency seawater electrolysis is impeded by the low activity and low durability of oxygen evolution catalysts due to the complex composition and competitive side reactions in seawater.Herein,a heterogeneousstr...High-efficiency seawater electrolysis is impeded by the low activity and low durability of oxygen evolution catalysts due to the complex composition and competitive side reactions in seawater.Herein,a heterogeneousstructured catalyst is constructed by depositing NiFe-layered double hydroxides(NiFe-LDH)on the substrate of MXene(V_(2)CT_(x))modified Ni foam(NF),and abbreviated as NiFe-LDH/V_(2)CT_(x)/NF.As demonstrated,owing to the intrinsic negative charge characteristic of V_(2)CT_(x),chlorine ions are denied entry to the interface between NiFeLDH and V_(2)CT_(x)/NF substrate,thus endowing NiFe-LDH/V_(2)CT_(x)/NF catalyst with high corrosion resistance and durable stability for 110 h at 500 mA cm^(-2).Meanwhile,the two-dimensional structure and high electrical conductivity of V_(2)CT_(x) can respectively enlarge the electrochemical active surface area and guarantee fast charge transfer,thereby synergistically promoting the catalytic performance of NiFe-LDH/V_(2)CT_(x)/NF in both deionized water electrolyte(261 m V at 100 m A cm^(-2))and simulated seawater electrolyte(241 mV at 100 mA cm^(-2)).This work can guide the preparation of oxygen evolution catalysts and accelerate the industrialization of seawater electrolysis.展开更多
Objective:To investigate the effect of TSH inhibition therapy in the postoperative management of patients with differentiated thyroid cancer.Methods:Seventy patients diagnosed with differentiated thyroid cancer were s...Objective:To investigate the effect of TSH inhibition therapy in the postoperative management of patients with differentiated thyroid cancer.Methods:Seventy patients diagnosed with differentiated thyroid cancer were selected for the study.TSH inhibition therapy was administered to the research group,while thyroxine replacement therapy was provided to the control group during the postoperative management phase.This allowed for a comparative analysis between the two groups.Results:In comparison with the control group,the research group exhibited significant decreases in serum TSH,T3,and T4 levels after treatment,while FT4 and FT3 levels significantly increased(P<0.05).Additionally,significant decreases in Tg,VEGF,TSGF,CD44V6,and sIL-2R levels were observed in the research group after treatment(P<0.05).No significant differences were found in pre-treatment thyroid function between the two groups(P>0.05).Conclusion:The application of TSH inhibition therapy in the postoperative management of patients with differentiated thyroid cancer demonstrates promising outcomes.展开更多
This study aimed at exploring for new natural peptides with strong inhibitory capabilities on α-amylase, the main metabolic enzyme that regulates mellitus diabetes, in order to contribute in controlling this global p...This study aimed at exploring for new natural peptides with strong inhibitory capabilities on α-amylase, the main metabolic enzyme that regulates mellitus diabetes, in order to contribute in controlling this global pandemic. It has consisted in heat shock (to 60°C, 70°C, 80°C, 90°C and 100°C for 10, 20 and 30 minutes) of crude proteins extracted from biomass and extracellular parts of Saccharomyces cerevisiae under cultivation, and from the digestive fluid of the giant snail Achatina achatina, and in-vitro assays of the resulting solutions, as effectors, in human α-amylase catalyzing reactions. The results showed that whatever the temperature and time of treatment, an increase (from 2.65 to 3.98-fold) in proteins concentration was noticed. When blended up to 75 microliters in reaction mixtures, the three peptide extracts showed beyond 11% of inhibition of initial α-amylase activity. By reducing samples volume, only 5 microliters of the studied peptide extracts representing 4.70 μg of S. cerevisiae biomass peptides, 0.55 μg of S. cerevisiae extracellular peptides or 1.05 μg of peptides from the digestive fluid A. achatina were quite sufficient to induce complete (100%) inhibition of the human α-amylase activity. Compared to the inhibitory effect obtained from 2.50 μg of acarbose, a renowned antidiabetic, the studied peptide effectors showed more pronounced inhibitory activities. So, we can positively state that S. cerevisiae as well as A. achatina are both capable of synthesizing proteins made up of small inhibitory peptides which deserve purification and structural analysis for potential exploitation as healthy antidiabetic drugs.展开更多
文摘Diabetes is one of the most difficult chronic diseases to cure in the world,which seriously affects people’s health and quality of life.Flavonoids in buckwheat can regulate blood glucose levels by inhibitingα-amylase activity.Therefore,sweet buckwheat produced in Inner Mongolia was used as the research object,and buckwheat fl avonoids were extracted by ultrasonic-assisted extraction method.Total fl avonoids content was determined by ultraviolet-visible spectrophotometry.With acarbose as the positive control,the inhibition test ofα-amylase was carried out by DNS colorimetry to study the inhibition behavior of fl avonoids onα-amylase activity.The results showed that the extraction process of flavonoids was stable and reliable,and the established method for the determination of flavonoids was simple,accurate and reproducible.The total flavonoids content of buckwheat samples was 2.706 mg/g,buckwheat total fl avonoids extraction solution had an inhibitory eff ect onα-amylase,and its median inhibition concentration(IC_(50))was 38.53 mg/mL.The results of this experiment provide a technical reference for the development and utilization of fl avonoids in Inner Mongolia sweet buckwheat,and provide a theoretical reference for the development and application of flavonoid-rich hypoglycemic food.
基金Supported by National Science and Technology Support Project(2007BAD58B04 )Special Fund Project of Modern Agriculture(Tea) Industrial Technology SystemYunnan Department of Education and Scientific Research Fund (07Y40163)~~
文摘[Objective]The aim was to clarify the chemical substance basis of hypoglycemic and lipid-lowering effects of Pu-erh Tea. [Method]Pu-erh Tea was extracted with 95% ethanol,followed by petroleum ether,chloroform,ethyl acetate and n-butanol extraction,after the further purification and through the NKA-9 macroporous resin and many times of Sephadex column chromatography,two compounds were isolated,in the same time,the effect of Uracil and Gallic acid on α-amylase was studied. [Result]The Uracil and Gallic acid were isolated and identified respectively from Pu-erh Tea and the Uracil was firstly isolated from Pu-erh Tea; Gallic acid had strong inhibition on α-amylase. [Conclusion]It could provide some theories on the hypoglycemic and lipid-lowering effects of Pu-erh Tea.
基金Department of Science and Technology,Government of India,for providing INSPIRE Fellowshipauthorities of Annamalai University for providing necessary support
文摘Red rice(Oryza punctata) is a type of unpolished rice which has higher nutritional value compared to white rice or even polished rice. Owing to higher nutritive content and metabolites, dieticians strongly advise red rice for peoples with metabolic disorders including diabetics. However, the mechanism of action and contents of secondary metabolites in Indian red rice variety not reported scientifically. Therefore, the present study aimed to evaluate its mechanism of action through inhibitory effect of α-amylase and α-glucosidase. Initially, the whole grain of red rice was macerated with methanol at room temperature for 2 weeks. Then, the dried and powdered, samples at different concentrationfi(2.5, 10, 40, and 80 μg/m L) were employed to nd out in vitro inhibitory effects on α-amylase and α-glucosidase. In addition, an enzyme kinetics of effective extract was calculated by Line-weaver Burk(LWB) plot analysis. Moreover,the valuable metabolites in the efficient methanolic extract were quantified using high performance liquid chromatography(HPLC). The results demonstrated that red rice methanolic extract(RRMEt) possess strong inhibitory activity onα-amylase and α-glucosidase compared with acarbose(P < 0.01). The IC50 values of RRMEt was found to be 29.7 ±7.43 μg/m L for α-amylase and 20.4 ± 0.25 μg/m L for α-glucosidase. LWB indicated that RRMEt is an uncompetitive inhibitor. Further, HPLC analysis revealed protocatechuic acid, catechin, and chlorogenic acids were more abundant in RRMEt among the fourteen metabolites. We conclude, the efficiency of enzyme inhibition through the influence of phenolic compounds in RRMEt.
基金the financial backing of International Foundation for Science(IFS)for granting Dr.G.Oboh the research grant forthe execution of this work(IFS Grant Agreement No.E/4625-1)
文摘Objective:To investigate the inhibitory effect of Telfairia occidentalis Hook f.(Curcubitaceae)(T.occidentalis)leaf on key enzyme linked to type-2 diabetes(α-amylase andα-glucosidase)as well as assess the effect of blanching(a commonly practiced food processing technique)of the vegetable on these key enzymes.Methods:Fresh leaves of T.occidentalis were blanched in hot water for 10 minutes,and the extracts of both the fresh and blanched vegetables were prepared and used for subsequent analysis.The inhibitory effect of the extract onα-amylase andα-glucosidase activities as well as some antioxidant parameter was determined in vitro.Results:The result revealed that unprocessed T.occidentalis leaf reduce Fe^(3+)to Fe^(2+)and also inhibitedα-amylase andα-glucosidase activities in a dose dependent manner.However,blanching of the leafy vegetables caused a significant(P<0.05)increase in the antioxidant properties but decrease their ability to inhibitα-amylase andα-glucosidase activities.Conclusions:This antioxidant properties and enzyme inhibition could be part of the mechanism by which they are used in the treatment/prevention of type-2 diabetes.However,the blanched vegetable reduces their ability to inhibit bothα-amylase andα-glucosidase activity in vitro.
文摘The study was to investigate the changes of α-amylase inhibitor content in Pu-erh tea during pile-fermentation process. Pu-erh tea samples from two regions of Shuangjiang County and Jinggu Dai and Yi Autonomous County of Yunnan Province at various fermentation stages were used as experimental materials to investigate the effect of different fermentation stages on the inhibitory effect to α-amylase; and the change law of the inhibitory effect of c-amylase inhibitor during processing was meanwhile studied by determining the contents of tea polyphenol and amino acid. The results showed that crude meterial of Pu-erh tea presented strong inhibitory effect to α-amylase; this inhibitory effect assumed a de: creasing trend to the minimum at the middle stage of fermentation, whereafter it increased to some extent. Made tea also showed a strong inhibitory effect to α-amylase. During whole processing period, contents of tea polyphenol and amino acid generally assumed a remarkably decreasing trend. Our results provided references for further isolating co-amylase inhibitor from Pu-erh tea and discussing the mechanism of its health care function.
基金supported by the National Natural Science Foundation of China (31901462 and 31671613).
文摘Bacillus thuringiensis(Bt)cotton production is challenged by two main problems,i.e.,the low concentration of Bt protein at the boll setting stage and the lowest insect resistance in bolls among all the cotton plant’s organs.Therefore,increasing the Bt protein concentration at the boll stage,especially in bolls,has become the main goal for increasing insect resistance in cotton.In this study,two protein degradation inhibitors(ethylene diamine tetra acetic acid(EDTA)and leupeptin)were sprayed on the bolls,subtending leaves,and whole cotton plants at the peak flowering stage of two Bt cultivars(medium maturation Sikang 1(SK1))and early maturation Zhongmian 425(ZM425)in 2019 and 2020.The Bt protein content and protein degradation metabolism were assessed.The results showed that the Bt protein concentrations were enhanced by 21.3 to 38.8%and 25.0 to 38.6%in the treated bolls of SK1 and ZM425 respectively,while they were decreased in the subtending leaves of these treated bolls.In the treated leaves,the Bt protein concentrations increased by 7.6 to 23.5%and 11.2 to 14.9%in SK1 and ZM425,respectively.The combined application of EDTA and leupeptin to the whole cotton plant increased the Bt protein concentrations in both bolls and subtending leaves.The Bt protein concentrations in bolls were higher,increasing by 22.5 to 31.0%and 19.6 to 32.5%for SK1 and ZM425,respectively.The organs treated with EDTA or/and leupeptin showed reduced free amino acid contents,protease and peptidase activities and significant enhancements in soluble protein contents.These results indicated that inhibiting protein degradation could improve the protein content,thus increasing the Bt protein concentrations in the bolls or/and leaves of cotton plants.Therefore,the increase in the Bt protein concentration without yield reduction suggested that these two protein degradation inhibitors may be applicable for improving insect resistance in cotton production.
基金funds from the National Natural Science Foundation of China(51772082 and 51804106)the Natural Science Foundation of Hunan Province(2023JJ10005)
文摘Manganese-based material is a prospective cathode material for aqueous zinc ion batteries(ZIBs)by virtue of its high theoretical capacity,high operating voltage,and low price.However,the manganese dissolution during the electrochemical reaction causes its electrochemical cycling stability to be undesirable.In this work,heterointerface engineering-induced oxygen defects are introduced into heterostructure MnO_(2)(δa-MnO_(2))by in situ electrochemical activation to inhibit manganese dissolution for aqueous zinc ion batteries.Meanwhile,the heterointerface between the disordered amorphous and the crystalline MnO_(2)ofδa-MnO_(2)is decisive for the formation of oxygen defects.And the experimental results indicate that the manganese dissolution ofδa-MnO_(2)is considerably inhibited during the charge/discharge cycle.Theoretical analysis indicates that the oxygen defect regulates the electronic and band structure and the Mn-O bonding state of the electrode material,thereby promoting electron transport kinetics as well as inhibiting Mn dissolution.Consequently,the capacity ofδa-MnO_(2)does not degrade after 100 cycles at a current density of 0.5 Ag^(-1)and also 91%capacity retention after 500cycles at 1 Ag^(-1).This study provides a promising insight into the development of high-performance manganese-based cathode materials through a facile and low-cost strategy.
基金The National Natural Science Foundation of China under contract No.41721005the Fund of the Ministry of Natural Resources of the People’s Republic of China under contract Nos IRASCC 02-01-01 and 01-01-02C.
文摘Nitrification,a central process in the marine nitrogen cycle,produces regenerated nitrate in the euphotic zone and emits N_(2)O,a potent greenhouse gas as a by-product.The regulatory mechanisms of nitrification in the Southern Ocean,which is a critical region for CO_(2)sequestration and radiative benefits,remain poorly understood.Here,we investigated the in situ and dark nitrification rates in the upper 500 m and conducted substrate kinetics experiments across the Indian Sector in the Cosmonaut and Cooperation seas in the late austral summer.Our findings indicate that light inhibition of nitrification decreases exponentially with depth,exhibiting a light threshold of 0.53%photosynthetically active radiation.A positive relationship between dark nitrification and apparent oxygen utilization suggests a dependence on substrate availability from primary production.Importantly,an increased NH_(4)^(+) supply can act as a buffer against photo-inhibitory damage.Globally,substrate affinity(α)increases with depth and transitions from light to dark,decreases with increasing ambient NH_(4)^(+)and exhibits a latitudinal distribution,reflecting substrate utilization strategies.We also reveal that upwelling in Circumpolar Deep Water(CDW)stimulates nitrification through the introduction of potentially higher iron and deep diverse nitrifying microorganisms with higherα.We conclude that although light is the primary limiting factor for nitrification in summer,coupling between substrate availability and CDW upwelling can overcome this limitation,thereby alleviating photoinhibition by up to 45%±5.3%.
基金Supported by Laboratory of Natural Products Research.Jahangirnagar University,Dhaka,Bangladesh
文摘Objective:To investigate the therapeutic effects of methanol extract of Citrus macroptera Montr,fruit inα-amylase inhibitory activity(in vitro)and hypoglycemic activity in normal and glucose induced hyperglycemic rats(in vivo).Methods:Fruits of Citrus macroptera without rind was extracted with pure methanol following cold extraction and tested for presence of phytochemical constituents,α-amylase inhibitory activity,and hypoglycemic effect in normal rats and glucose induced hyperglycemic rats.Results:Presence of saponin,steroid and terpenoid were identified in the extract.The results showed that fruit extract had moderateα-amylase inhibitory activity[IC_(50)value=(3.638±0.190)mg/mL]as compared to acarbose.Moreover at 500 mg/kg and 1000 mg/kg doses fruit extract significantly(P<0.05 and P<0.01 respectively)reduced fasting blood glucose level in normal rats as compared to glibenclamide(5 mg/kg).In oral glucose tolerance test,500 mg/kg dose significantly reduced blood glucose level(P<0.05)at 2 h but 1000 mg/kg dose significantly reduced blood glucose level at 2 h and 3 h(P<0.05 and P<0.01 respectively)whereas glibenclamide(5 mg/kg)significantly reduced glucose level at every hour after administration.Overall time effect is also considered extremely significant with F value=23.83 and P value=0.0001 in oral glucose tolerance test.Conclusion:These findings suggest that the plant may be a potential source for the development of new oral hypoglycemic agent.
基金supported by the Program of Science and Technology Cooperation with Hong Kong, Macao, and Taiwan, China (2013DFH30050)the special fund for Agro-scientific Research in the Public Interest (201403063)+1 种基金the earmarked fund for China Agriculture Research System (CYTX-014)Agricultural Science and Technology Innovation Program
文摘The objective of this study was to characterize the phaseolin type and a-amylase(αAI) level in common bean(Phaseolus vidgaris L.) accessions deposited in the Chinese National Genebank.The 40 accessions sampled were common varieties originating in Asia,North America,South America,Europe,and Africa.No Inca(I-) phaseolin was observed in the accessions.Only four accessions contained Tendergreen(T-) phaseolin and the remaining36 contained Sanilac(S-) phaseolin.aAI proteins extracted from nine accessions showed higher a-amylase inhibitory activity than the control(Phase 2,IC_(50) = 0.65 μg).These common bean accessions have potential use as nutraceutical ingredients.
基金supported by Tianjin Key R&D Plan-Key Projects Supported by Science and Technology (19YFZCSN00010)
文摘Ginseng(Panax ginseng C.A.Meyer)as a common dietary adjunct is widely applied in Traditional Chinese Medicine due to its health-promoting properties,but the differences between white ginseng and red ginseng was rarely studied.In the present study,color parameters and scanning electron microscope(SEM)were determined to evaluate the differences of ginseng color and microstructure induced by processing procedure.Quantitative analysis of multi-components by a single-marker(QAMS)method and anti-α-amylase activity test were used to assess variations of chemical ingredients and pharmacological activity between white and red ginseng.Finally,molecular docking studies were carried out to screen out the most effective compound againstα-amylase.Results indicated that processing had a significant impact on the physicochemical properties and pharmacological activity of white and red ginseng.After processing,the color value of L*declined significantly.Red ginseng sample displayed a compact structure and presented of a gel layer on the surface compared to white ginseng.Additionally,the content of ginsenosides and the activity of anti-α-amylase decreased.The contents of total ginsenosides were positively correlated with the anti-α-amylase activities of ginseng,and ginsenoside Rb1 might be the most effective compound to inhibit the activity ofα-amylase.
基金financially supported by the National Natural Science Foundation of China(22168019 and 52074141)the Major Science and Technology Projects in Yunnan Province(202202AB080014)+1 种基金The authors are grateful to the National Natural Science Foundation of Chinathe Major Science and Technology Projects in Yunnan Province for their support.
文摘Zinc(Zn)-air batteries are widely used in secondary battery research owing to their high theoretical energy density,good electrochemical reversibility,stable discharge performance,and low cost of the anode active material Zn.However,the Zn anode also leads to many challenges,including dendrite growth,deformation,and hydrogen precipitation self-corrosion.In this context,Zn dendrite growth has a greater impact on the cycle lives.In this dissertation,a dendrite growth model for a Zn-air battery was established based on electrochemical phase field theory,and the effects of the charging time,anisotropy strength,and electrolyte temperature on the morphology and growth height of Zn dendrites were studied.A series of experiments was designed with different gradient influencing factors in subsequent experiments to verify the theoretical simulations,including elevated electrolyte temperatures,flowing electrolytes,and pulsed charging.The simulation results show that the growth of Zn dendrites is controlled mainly by diffusion and mass transfer processes,whereas the electrolyte temperature,flow rate,and interfacial energy anisotropy intensity are the main factors.The experimental results show that an optimal electrolyte temperature of 343.15 K,an optimal electrolyte flow rate of 40 ml·min^(-1),and an effective pulse charging mode.
文摘This article provides commentary on the article by Zhang et al.In this original research,Zhang et al investigated the therapeutic potential of teneligliptin for diabetic cardiomyopathy(DCM),which was mediated by targeting the NOD-like receptor protein 3(NLRP3)inflammasome.Through the use of both in vivo and in vitro models,the study demonstrated that teneligliptin alleviates cardiac hyper-trophy,reduces myocardial injury,and mitigates the inflammatory responses as-sociated with DCM.These findings suggest that teneligliptin’s cardioprotective effects are mediated through the inhibition of NLRP3 inflammasome activation,positioning it as a promising therapeutic option for managing DCM in diabetic patients.
文摘[Objectives]To fully understand the quality of commercial enzyme inhibition-colorimetric pesticide residue rapid detection kits,so that they can play a greater role in the detection and supervision of agricultural products.[Methods]The sensitivity of 28 kinds of pesticides was determined by using the commercially available enzyme inhibition colorimetric rapid detection kit with Hendu brand.[Results]There was a significant difference in the sensitivity of the kit to each pesticide,and the kit was more sensitive to dichlorvos among the 28 pesticides tested.The sensitivity to methyl isosalifos,dimethoate,isocarbophos,fenthion and phorate was poor,and the sensitivity to quinalphos was different between 3.0 and 2.5 mL.[Conclusions]The large difference of the sensitivity of the enzyme inhibition-colorimetric rapid detection kit for pesticide residues to different kits is a reason for the false positive and false negative test results of the kit,which needs to be considered by relevant personnel.
基金supported by the Ministerio de Economía,Industria y Competitividad(Agencia Estatal de Investigación,AEI,to CGF and MP)Fondo Europeo de Desarrollo Regional(MINECO-FEDER)(PID2022-139016OA-I00,PDC2022-133441-I00,to CGF and MP),Generalitat de Catalunya(2021 SGR 00357+3 种基金to CGF and MP)co-financed by Secretaria d’Universitats i Recerca del Departament d’Empresai Coneixement de la Generalitat de Catalunya 2021(Llavor 00086,to CGF)the recipient of an Alzheimer’s Association Research Fellowship(AARF-21-848511)the Agència de Gestiód’Ajuts Universitaris i de Recerca(AGAUR)for her FI-SDUR fellowship(2021FISDU 00182).
文摘Dysregulation of G9a,a histone-lysine N-methyltransferase,has been observed in Alzheimer’s disease and has been correlated with increased levels of chronic inflammation and oxidative stress.Likewise,microRNAs are involved in many biological processes and diseases playing a key role in pathogenesis,especially in multifactorial diseases such as Alzheimer’s disease.Therefore,our aim has been to provide partial insights into the interconnection between G9a,microRNAs,oxidative stress,and neuroinflammation.To better understand the biology of G9a,we compared the global microRNA expression between senescence-accelerated mouse-prone 8(SAMP8)control mice and SAMP8 treated with G9a inhibitor UNC0642.We found a downregulation of miR-128 after a G9a inhibition treatment,which interestingly binds to the 3′untranslated region(3′-UTR)of peroxisome-proliferator activator receptor γ(PPARG)mRNA.Accordingly,Pparg gene expression levels were higher in the SAMP8 group treated with G9a inhibitor than in the SAMP8 control group.We also observed modulation of oxidative stress responses might be mainly driven Pparg after G9a inhibitor.To confirm these antioxidant effects,we treated primary neuron cell cultures with hydrogen peroxide as an oxidative insult.In this setting,treatment with G9a inhibitor increases both cell survival and antioxidant enzymes.Moreover,up-regulation of PPARγby G9a inhibitor could also increase the expression of genes involved in DNA damage responses and apoptosis.In addition,we also described that the PPARγ/AMPK axis partially explains the regulation of autophagy markers expression.Finally,PPARγ/GADD45αpotentially contributes to enhancing synaptic plasticity and neurogenesis after G9a inhibition.Altogether,we propose that pharmacological inhibition of G9a leads to a neuroprotective effect that could be due,at least in part,by the modulation of PPARγ-dependent pathways by miR-128.
文摘Honey has long been considered a wound treatment used to keep cuts and other epidermal injuries clean. This study tested that claim by comparing manuka honey used in medicine today, local unprocessed honey taken straight from a hive, and pasteurized honey found at a store, on strains of E. coli and S. epidermidis. The study evaluated the effects these honeys had on bacterial growth to determine which had the greatest inhibition of bacterial growth. To determine this, plates streaked with strains of E. coli or S. epidermidis bacteria and agar wells filled with one of the honeys were incubated and subsequently the diameter of the zone of inhibition was measured. After 20 trials using each honey and bacteria type, manuka and unprocessed were shown to have a statistically significant advantage over the pasteurized honey at inhibiting the growth of E. coli and S. epidermidis, though it was variable whether manuka had an advantage over the unprocessed honey.
文摘In this study we used a chemical solution method from oxalic acid (OX. acid) and zinc acetate (ZnAc) to prepare Zinc Oxide nanoparticles (ZnONPs) and Zinc Oxide nanoparticles doped with Chlorine (Cl:ZnONPs). The characterizations (FTIR, X-ray, SEM, TEM) of ZnONPs and Cl:ZnONPs were determined. Amylase inhibitors of ZnONPs and Cl:ZnONPs also were determined. SEM indicated that the ZnONPs and Cl:ZnONPs have an average particle size of 46.65 - 74.64 nm. TEM images of the ZnONPs and Cl:ZnONPs showed the round shaped. Compounds b,<span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">d and e exhibited significant inhibitory activity against amylase enzyme</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">(from 69.21</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">±</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">1.44 to 76.32</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">±</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">0.78), respectively, and were comparable with that of acarbose (86.32 ± 0.63) at 1000</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">μg, thereby, projecting ZnONPs and Cl:ZnONPs as </span><i><span style="font-family:Verdana;">α</span></i><span style="font-family:Verdana;">-amylase inhibitors.</span></span></span></span>
基金the financial support of the National Natural Science Foundation of China(52162027,52274297 and 52164028)the Hainan Province Science and Technology Special Fund(ZDYF2023SHFZ091)+4 种基金the Hainan Provincial Natural Science Foundation of China(project Nos.221RC540)Hainan Provincial Postdoctoral Science Foundation(project Nos.2022-BH-25)the Collaborative Innovation Center of Marine Science and Technology(Hainan University)the Start-up Research Foundation of Hainan University(KYQD(ZR)2008,23069,23073 and 23067)the specific research fund of The Innovation Platform for Academicians of Hainan Province(YSPTZX202315)。
文摘High-efficiency seawater electrolysis is impeded by the low activity and low durability of oxygen evolution catalysts due to the complex composition and competitive side reactions in seawater.Herein,a heterogeneousstructured catalyst is constructed by depositing NiFe-layered double hydroxides(NiFe-LDH)on the substrate of MXene(V_(2)CT_(x))modified Ni foam(NF),and abbreviated as NiFe-LDH/V_(2)CT_(x)/NF.As demonstrated,owing to the intrinsic negative charge characteristic of V_(2)CT_(x),chlorine ions are denied entry to the interface between NiFeLDH and V_(2)CT_(x)/NF substrate,thus endowing NiFe-LDH/V_(2)CT_(x)/NF catalyst with high corrosion resistance and durable stability for 110 h at 500 mA cm^(-2).Meanwhile,the two-dimensional structure and high electrical conductivity of V_(2)CT_(x) can respectively enlarge the electrochemical active surface area and guarantee fast charge transfer,thereby synergistically promoting the catalytic performance of NiFe-LDH/V_(2)CT_(x)/NF in both deionized water electrolyte(261 m V at 100 m A cm^(-2))and simulated seawater electrolyte(241 mV at 100 mA cm^(-2)).This work can guide the preparation of oxygen evolution catalysts and accelerate the industrialization of seawater electrolysis.
文摘Objective:To investigate the effect of TSH inhibition therapy in the postoperative management of patients with differentiated thyroid cancer.Methods:Seventy patients diagnosed with differentiated thyroid cancer were selected for the study.TSH inhibition therapy was administered to the research group,while thyroxine replacement therapy was provided to the control group during the postoperative management phase.This allowed for a comparative analysis between the two groups.Results:In comparison with the control group,the research group exhibited significant decreases in serum TSH,T3,and T4 levels after treatment,while FT4 and FT3 levels significantly increased(P<0.05).Additionally,significant decreases in Tg,VEGF,TSGF,CD44V6,and sIL-2R levels were observed in the research group after treatment(P<0.05).No significant differences were found in pre-treatment thyroid function between the two groups(P>0.05).Conclusion:The application of TSH inhibition therapy in the postoperative management of patients with differentiated thyroid cancer demonstrates promising outcomes.
文摘This study aimed at exploring for new natural peptides with strong inhibitory capabilities on α-amylase, the main metabolic enzyme that regulates mellitus diabetes, in order to contribute in controlling this global pandemic. It has consisted in heat shock (to 60°C, 70°C, 80°C, 90°C and 100°C for 10, 20 and 30 minutes) of crude proteins extracted from biomass and extracellular parts of Saccharomyces cerevisiae under cultivation, and from the digestive fluid of the giant snail Achatina achatina, and in-vitro assays of the resulting solutions, as effectors, in human α-amylase catalyzing reactions. The results showed that whatever the temperature and time of treatment, an increase (from 2.65 to 3.98-fold) in proteins concentration was noticed. When blended up to 75 microliters in reaction mixtures, the three peptide extracts showed beyond 11% of inhibition of initial α-amylase activity. By reducing samples volume, only 5 microliters of the studied peptide extracts representing 4.70 μg of S. cerevisiae biomass peptides, 0.55 μg of S. cerevisiae extracellular peptides or 1.05 μg of peptides from the digestive fluid A. achatina were quite sufficient to induce complete (100%) inhibition of the human α-amylase activity. Compared to the inhibitory effect obtained from 2.50 μg of acarbose, a renowned antidiabetic, the studied peptide effectors showed more pronounced inhibitory activities. So, we can positively state that S. cerevisiae as well as A. achatina are both capable of synthesizing proteins made up of small inhibitory peptides which deserve purification and structural analysis for potential exploitation as healthy antidiabetic drugs.