Carbohydrate chains are the principal antigens by which Bacillus thuringiensis(Bt) identify receptor proteins. The interaction between the antigen and Bt causes a pore in the membrane of midgut epithelial cells of i...Carbohydrate chains are the principal antigens by which Bacillus thuringiensis(Bt) identify receptor proteins. The interaction between the antigen and Bt causes a pore in the membrane of midgut epithelial cells of insects. Receptor proteins, such as aminopeptidase N and alkaline phosphatase, are glycoproteins. Cadherin is another cell surface receptor protein which has potential glycosylation sites. Glycosyltransferase is very important for the synthesis and modification of receptor proteins. It can indirectly influence the function of Bt. The 1 950 bp full-length c DNA encoding β-1,3-galactosyltransferase was cloned from the the midgut of Helicoverpa armigera by degenerative PCR combined with RACE techniques(GAL-Harm, Gen Bank accession no.: GQ904195.1) with two potential N-glycosylation sites(^157NNTI^160 and ^272NKTL^275). Protein sequence alignments revealed that H. armigera β-1,3-galactosyltransferase shared high identity with β-1,3-galactosyltransferase in other insect species. The expression level of the β-1,3-galactosyltransferase gene in Cry1Ac-resistant H. armigera larvae was 9.2-fold higher than that in susceptible strain. The function of β-1,3-galactosyltransferase was investigated using RNAi technique. The result showed Cry1 Ac enhanced the toxicity against the si RNA-treated larvae compared with non-si RNA-treated ones, which indicated β-1,3-galactosyltransferase played an important role for the insecticidal toxicity of Cry1 Ac in H. armigera.展开更多
Vaccarin,a flavonoid glycoside isolated from Vaccaria segetalis,is non-toxic to 3T3-L1 cells up to concentrations of 200μM.Accordingly,we investigated the effects of this natural product on adipogenesis and lipolysis...Vaccarin,a flavonoid glycoside isolated from Vaccaria segetalis,is non-toxic to 3T3-L1 cells up to concentrations of 200μM.Accordingly,we investigated the effects of this natural product on adipogenesis and lipolysis in 3T3-L1 adipocytes.Our results revealed that vaccarin significantly inhibited lipid accumulation by suppressing the adipogenesis-related transcription factors peroxisome proliferator-activated receptorγ(PPARγ)and the CCAAT/enhancer-binding proteinα(C/EBPα).Specifically,lipid accumulation decreased by up to 27.7±2.7%when 3T3-L1 adipocytes were treated with a 10μM concentration of vaccarin.Mechanistic studies showed that the compound inhibited adipogenesis through activation of the Hedgehog(Hh)signaling pathway and so restoring Smo and Gli1 expression at an early stage of differentiation.In mature 3T3-L1 cells,vaccarin significantly increased the secretion of glycerol into the surrounding medium and thus indicating that it accelerated the degradation of triglycerides.In addition,vaccarin,was shown to enhance lipolysis through stimulation of the transcription levels of lipoprotein lipase,monoglycerides lipase,adipose triacylglyceride lipase,hormone-sensitive lipase and adipose differentiated-related protein.All told,vaccarin suppressed lipid accumulation and enhanced lipolysis during adipocyte differentiation by restoring Hh signaling.As such,it is a phytochemical capable of halting adipocyte hyperplasia and,thereby,ameliorating the effects of obesity.展开更多
基金supported by the Key Technologies R&D Program of China during the 12th Five-Year Plan period (2012BAD19B05)the National Natural Science Foundation of China (30971921,31321004)
文摘Carbohydrate chains are the principal antigens by which Bacillus thuringiensis(Bt) identify receptor proteins. The interaction between the antigen and Bt causes a pore in the membrane of midgut epithelial cells of insects. Receptor proteins, such as aminopeptidase N and alkaline phosphatase, are glycoproteins. Cadherin is another cell surface receptor protein which has potential glycosylation sites. Glycosyltransferase is very important for the synthesis and modification of receptor proteins. It can indirectly influence the function of Bt. The 1 950 bp full-length c DNA encoding β-1,3-galactosyltransferase was cloned from the the midgut of Helicoverpa armigera by degenerative PCR combined with RACE techniques(GAL-Harm, Gen Bank accession no.: GQ904195.1) with two potential N-glycosylation sites(^157NNTI^160 and ^272NKTL^275). Protein sequence alignments revealed that H. armigera β-1,3-galactosyltransferase shared high identity with β-1,3-galactosyltransferase in other insect species. The expression level of the β-1,3-galactosyltransferase gene in Cry1Ac-resistant H. armigera larvae was 9.2-fold higher than that in susceptible strain. The function of β-1,3-galactosyltransferase was investigated using RNAi technique. The result showed Cry1 Ac enhanced the toxicity against the si RNA-treated larvae compared with non-si RNA-treated ones, which indicated β-1,3-galactosyltransferase played an important role for the insecticidal toxicity of Cry1 Ac in H. armigera.
基金This work was graciously supported by the Chinese National Natural Science Foundation(Grant 31901725 and 32201933)the Science and Technology Projects in Guangzhou(Grant 202201010170).
文摘Vaccarin,a flavonoid glycoside isolated from Vaccaria segetalis,is non-toxic to 3T3-L1 cells up to concentrations of 200μM.Accordingly,we investigated the effects of this natural product on adipogenesis and lipolysis in 3T3-L1 adipocytes.Our results revealed that vaccarin significantly inhibited lipid accumulation by suppressing the adipogenesis-related transcription factors peroxisome proliferator-activated receptorγ(PPARγ)and the CCAAT/enhancer-binding proteinα(C/EBPα).Specifically,lipid accumulation decreased by up to 27.7±2.7%when 3T3-L1 adipocytes were treated with a 10μM concentration of vaccarin.Mechanistic studies showed that the compound inhibited adipogenesis through activation of the Hedgehog(Hh)signaling pathway and so restoring Smo and Gli1 expression at an early stage of differentiation.In mature 3T3-L1 cells,vaccarin significantly increased the secretion of glycerol into the surrounding medium and thus indicating that it accelerated the degradation of triglycerides.In addition,vaccarin,was shown to enhance lipolysis through stimulation of the transcription levels of lipoprotein lipase,monoglycerides lipase,adipose triacylglyceride lipase,hormone-sensitive lipase and adipose differentiated-related protein.All told,vaccarin suppressed lipid accumulation and enhanced lipolysis during adipocyte differentiation by restoring Hh signaling.As such,it is a phytochemical capable of halting adipocyte hyperplasia and,thereby,ameliorating the effects of obesity.