The catalysis of olefin polymerization through the chain-walking process is a subject of great interest. In this contribution, the successful synthesis of a Brookhart-type unsymmetrical α-diimine nickel catalyst Ni, ...The catalysis of olefin polymerization through the chain-walking process is a subject of great interest. In this contribution, the successful synthesis of a Brookhart-type unsymmetrical α-diimine nickel catalyst Ni, which contains both dibenzhydryl and phenyl groups, was determined by X-ray crystallography. The compound has a pseudo-tetrahedral geometry at the Ni center, showing pseudo-C2-symmetry. Upon activation with modified methylaluminoxane (MMAO), Ni1 exhibits high catalytic activity up to 1.02 × 107 g PE (mol Ni h)−1 toward ethylene polymerization, enabling the synthesis of high molecular weight branched polyethylene. The molecular weights and branching densities could be tuned over a very wide range. The polymerization results indicated the possibility of precise microstructure control, depending on the polymerization temperature. The branching densities were decreased with increasing the polymerization temperature.展开更多
In the practical use for the production of the α-olefins, it is highly desired to develop a novel heterogeneous catalyst system. The metal complexes immobilized into the clay interlayers show a great potential as het...In the practical use for the production of the α-olefins, it is highly desired to develop a novel heterogeneous catalyst system. The metal complexes immobilized into the clay interlayers show a great potential as heterogeneous catalysts due to their excellent processability. In this study, nine types of heterogeneous procatalyst Ln/Ni2+-micas were synthesized via a one-pot preparation method, which includes both the condensation reaction of the ligand derivatives and the intercalation of the ligands into the Ni2+ ion-exchanged fluorotetrasilicic mica interlayer. The ligand structures of the prepared procatalysts were [Ln: R-N = C(Nap)-C(Nap) = N-R] [(Nap = 1,8-naphthdiyl) (L1, R = 2-MePh;L2, R = 2-FPh;L3, R = 2-BrPh;L4, R = 4-MePh;L5, R = 4-FPh;L6, R = 4-BrPh;L7, R = 2,4-F2Ph;L8, R = 2,4-Br2Ph;L9, R = 2,6-F2Ph). At 50℃ and 0.7 MPaethylene pressure, the triisobutylaluminum-activated L1-L6/Ni2+-mica showed a catalytic activity for the ethylene oligo-/polymerization in the range of 334 - 549 g-ethylene•g-cat–1•h–1. A high catalyst activity was obtained when the substituent having a larger steric bulk than that of a methyl substituent was introduced at the ortho-position of the aryl rings. The introduction of the fluorine substituent as a strong electron-withdrawing group to the para-position also increased the catalytic activity. The L2, L4, L5, and L6/Ni2+-micas showed moderate selectivities to oligomers consisting of C4-C20 in the range of 19.9 - 41.6 wt% at 50℃. The calculated Schulz-Flory constants α based on the mole fraction of C12 and C14 were within 0.61 - 0.78.展开更多
A new α-diimine ligand 1a, bis[N,N′-(4-tert-butyl-2,6-dimethylphenyl)imino]-2,3-butanediylidene and its corresponding Ni(II) complex 2a, {bis[N,N′-(4-tert-butyl-2,6-dimethylphenyl)imino]-2,3-butanediylidene}d...A new α-diimine ligand 1a, bis[N,N′-(4-tert-butyl-2,6-dimethylphenyl)imino]-2,3-butanediylidene and its corresponding Ni(II) complex 2a, {bis[N,N′-(4-tert-butyl-2,6-dimethylphenyl)imino]-2,3-butanediylidene}dibromo- nickel were successfully synthesized, and characterized by 1H NMR, 13C NMR, Fourier transform infrared spectroscope(FTIR), elemental analysis and X-ray photoelectron spectroscopy(XPS). α-Diimine ligand 1b, bis[N,N′-(2,6- dimethylphenyl)imino]-2,3-butanediylidene and its corresponding Ni(II) complex 2b, {bis[N,N′-(2,6-dimethyl- phenyl)imino]-2,3-butanediylidene}dibromonickel were also synthesized and characterized for comparison. The pre-catalyst 2a with sterically bulky, electron-donating group tert-butyl, activated by diethylaluminum chloride (DEAC) and tested in the polymerization of ethylene, was very highly active[2.01×107 g PE/(mol Ni?h?0.1 MPa)] and led to a very highly branched polyethylene(ca. 35―103 branches/1000 C). The state of the polyethylene obtained varied from plastic, elastomer polymers to the oil-like hyperbranched polymers.展开更多
Two novel copper complexes with methyl or trifluoro-substituted mono-β-diiminato ligands and one acetoxyl anion were synthesized and characterized by IR spectroscopy and elemental analysis for the first time. The str...Two novel copper complexes with methyl or trifluoro-substituted mono-β-diiminato ligands and one acetoxyl anion were synthesized and characterized by IR spectroscopy and elemental analysis for the first time. The structure of complex 2 bearing trifluoro substituents was further confirmed by single-crystal X-ray diffraction. The crystal belongs to the triclinic system, space group P1 with a = 7.377(4), b = 11.727(6), c = 12.913(7) ?, α = 116.569(6), β = 98.829(7), γ = 96.520(6)°, V = 966.2(8) ?3, Z = 2, Mr = 479.86, Dc = 1.649 g/cm3, F(000) = 482, μ = 1.205 mm-1, the final R = 0.0370 and w R = 0.0903 for 3430 observed reflections with I 〉 2σ(I). These mono-β-diiminato copper complexes can effectively catalyze methacrylate(MA) polymerization when activated by MMAO. The introduction of fluoro groups into the N-aryl ring of β-diiminato ligands can greatly increase the catalytic activity of copper complexes as well as the molecular weight of PMA.展开更多
Bis (4-(4-amino-3, 5-diethylbenzyl)-2, 6-diethylphenylimino) acenaphthene] di- chloronickel (NiLCl2) was prepared and supported on SiO2 modified by methyl trichlorsilane(S-1) and on SiO2-MgCl2/TiCl4 (S-2) re...Bis (4-(4-amino-3, 5-diethylbenzyl)-2, 6-diethylphenylimino) acenaphthene] di- chloronickel (NiLCl2) was prepared and supported on SiO2 modified by methyl trichlorsilane(S-1) and on SiO2-MgCl2/TiCl4 (S-2) respectively. Two supported catalysts S-1 and S-2 used as catalysts for ethylene polymerization were studied and the influences of various polymerization conditions, including the polymerization temperature, cocatalysts, Al/Ni molar ratio on the catalytic activity, branching degree and branch length of PE were also investigated. The experimental results show that the supported catalysts exhibit higher catalytic activity for ethylene polymerization, the highest catalytic activity of S-1 using AlEt2Cl as cocatalyst at 50 ℃, reaching 5.8×10^5gPE/molNi·h, and needed lower Al/Ni molar ratio compared to homogeneous analogue.展开更多
Late-transition-metal(LTM) catalysts are a family of very flexible ethylene polymerization catalysts because their catalytic performance can be easily adjusted by modifying the ligand structure.Their less oxyphilicity...Late-transition-metal(LTM) catalysts are a family of very flexible ethylene polymerization catalysts because their catalytic performance can be easily adjusted by modifying the ligand structure.Their less oxyphilicity character,which may promote the production of copolymers from ethylene and polar comonomers,is another aspect that attracts much attention in both academic and industrial fields.The immobilization of LTM catalysts on spherical supports is a crucial step prior to their use in the industrial processes of gas-phase or slurry polymerizations.This paper reviews recent developments in supported LTM catalysts for olefin polymerization,and summarizes loading methods and mechanisms of the immobilization of LTM catalysts on inorganic,organic,and inorganic-organic materials,and the effects of immobilization on catalytic activity,polymerization mechanism,and polymer morphology.展开更多
Ethylene oligomerization has been investigated by using catalyst systemscomposed of nickel (II) diimine complexes (diimine = N, N′-o-phenylene bis(salicylideneaminato), N,N′-o-phenyl-enebisbenzal, N, N′-ethylenebis...Ethylene oligomerization has been investigated by using catalyst systemscomposed of nickel (II) diimine complexes (diimine = N, N′-o-phenylene bis(salicylideneaminato), N,N′-o-phenyl-enebisbenzal, N, N′-ethylenebisbenzal) and ethylaluminoxane (EAO). The main productsin toluene and at 110―200℃ were olefins with low carbon numbers (C_4―C_(10)). Effects of reactiontemperature, Al/Ni molar ratio and reaction period on both the catalytic activity and productdistribution were explored. The activity of 1.84 x 10~5 g of oligomer/(mol_(Ni)·h), with 87.4% ofselectivity to C_4―C_(10) olefins, was attained at 200℃ in the reaction when a catalyst composedof NiCl_2-(PhCH= o-NC_6H_4N= CHPh) and EAO was used.展开更多
Researches of late-transition metal complexes for ethylene polymerization and oligomerization have attracted a lot of attention in the last two decades.A large number of late-transition metal complexes with symmetric ...Researches of late-transition metal complexes for ethylene polymerization and oligomerization have attracted a lot of attention in the last two decades.A large number of late-transition metal complexes with symmetric diimine ligands have been extensively studied.Although the research of unsymmetric diimine late-transition metal complexes was still in the initial stage,some superior performances were observed in olefin polymerization.Recent developments in the research of ethylene polymerization and oligomerization catalyzed by late-transition metal complexes with unsymmetric diimine ligands were summarized in this review,with the influence of complex structure on the catalytic performance of the catalyst analyzed.展开更多
制备了N,N-二(2,6-二异丙基苯基)苊二亚胺氯化镍,与A lE t2C l组成催化体系,催化4-乙烯基吡啶(4-VP)的聚合。研究表明,该催化体系可以有效地催化4-乙烯基吡啶聚合,并具有较高的活性,聚合条件如单体浓度、铝镍摩尔比、聚合温度和聚合时...制备了N,N-二(2,6-二异丙基苯基)苊二亚胺氯化镍,与A lE t2C l组成催化体系,催化4-乙烯基吡啶(4-VP)的聚合。研究表明,该催化体系可以有效地催化4-乙烯基吡啶聚合,并具有较高的活性,聚合条件如单体浓度、铝镍摩尔比、聚合温度和聚合时间等对4-乙烯基吡啶的聚合反应活性有较大的影响。最佳反应条件是单体浓度为0.6 m o l/L、n(A l)/n(N i)为800、温度为30℃,这时催化活性达到47.2 kg P(4-VP)/m o l N i.h。展开更多
文摘The catalysis of olefin polymerization through the chain-walking process is a subject of great interest. In this contribution, the successful synthesis of a Brookhart-type unsymmetrical α-diimine nickel catalyst Ni, which contains both dibenzhydryl and phenyl groups, was determined by X-ray crystallography. The compound has a pseudo-tetrahedral geometry at the Ni center, showing pseudo-C2-symmetry. Upon activation with modified methylaluminoxane (MMAO), Ni1 exhibits high catalytic activity up to 1.02 × 107 g PE (mol Ni h)−1 toward ethylene polymerization, enabling the synthesis of high molecular weight branched polyethylene. The molecular weights and branching densities could be tuned over a very wide range. The polymerization results indicated the possibility of precise microstructure control, depending on the polymerization temperature. The branching densities were decreased with increasing the polymerization temperature.
文摘In the practical use for the production of the α-olefins, it is highly desired to develop a novel heterogeneous catalyst system. The metal complexes immobilized into the clay interlayers show a great potential as heterogeneous catalysts due to their excellent processability. In this study, nine types of heterogeneous procatalyst Ln/Ni2+-micas were synthesized via a one-pot preparation method, which includes both the condensation reaction of the ligand derivatives and the intercalation of the ligands into the Ni2+ ion-exchanged fluorotetrasilicic mica interlayer. The ligand structures of the prepared procatalysts were [Ln: R-N = C(Nap)-C(Nap) = N-R] [(Nap = 1,8-naphthdiyl) (L1, R = 2-MePh;L2, R = 2-FPh;L3, R = 2-BrPh;L4, R = 4-MePh;L5, R = 4-FPh;L6, R = 4-BrPh;L7, R = 2,4-F2Ph;L8, R = 2,4-Br2Ph;L9, R = 2,6-F2Ph). At 50℃ and 0.7 MPaethylene pressure, the triisobutylaluminum-activated L1-L6/Ni2+-mica showed a catalytic activity for the ethylene oligo-/polymerization in the range of 334 - 549 g-ethylene•g-cat–1•h–1. A high catalyst activity was obtained when the substituent having a larger steric bulk than that of a methyl substituent was introduced at the ortho-position of the aryl rings. The introduction of the fluorine substituent as a strong electron-withdrawing group to the para-position also increased the catalytic activity. The L2, L4, L5, and L6/Ni2+-micas showed moderate selectivities to oligomers consisting of C4-C20 in the range of 19.9 - 41.6 wt% at 50℃. The calculated Schulz-Flory constants α based on the mole fraction of C12 and C14 were within 0.61 - 0.78.
基金Supported by the National Natural Science Foundation of China(No.20964003)
文摘A new α-diimine ligand 1a, bis[N,N′-(4-tert-butyl-2,6-dimethylphenyl)imino]-2,3-butanediylidene and its corresponding Ni(II) complex 2a, {bis[N,N′-(4-tert-butyl-2,6-dimethylphenyl)imino]-2,3-butanediylidene}dibromo- nickel were successfully synthesized, and characterized by 1H NMR, 13C NMR, Fourier transform infrared spectroscope(FTIR), elemental analysis and X-ray photoelectron spectroscopy(XPS). α-Diimine ligand 1b, bis[N,N′-(2,6- dimethylphenyl)imino]-2,3-butanediylidene and its corresponding Ni(II) complex 2b, {bis[N,N′-(2,6-dimethyl- phenyl)imino]-2,3-butanediylidene}dibromonickel were also synthesized and characterized for comparison. The pre-catalyst 2a with sterically bulky, electron-donating group tert-butyl, activated by diethylaluminum chloride (DEAC) and tested in the polymerization of ethylene, was very highly active[2.01×107 g PE/(mol Ni?h?0.1 MPa)] and led to a very highly branched polyethylene(ca. 35―103 branches/1000 C). The state of the polyethylene obtained varied from plastic, elastomer polymers to the oil-like hyperbranched polymers.
基金Supported by the National Natural Science Foundation of China(21172269)the Applied Fundamental Research Project of Wuhan City(2015011701011598)
文摘Two novel copper complexes with methyl or trifluoro-substituted mono-β-diiminato ligands and one acetoxyl anion were synthesized and characterized by IR spectroscopy and elemental analysis for the first time. The structure of complex 2 bearing trifluoro substituents was further confirmed by single-crystal X-ray diffraction. The crystal belongs to the triclinic system, space group P1 with a = 7.377(4), b = 11.727(6), c = 12.913(7) ?, α = 116.569(6), β = 98.829(7), γ = 96.520(6)°, V = 966.2(8) ?3, Z = 2, Mr = 479.86, Dc = 1.649 g/cm3, F(000) = 482, μ = 1.205 mm-1, the final R = 0.0370 and w R = 0.0903 for 3430 observed reflections with I 〉 2σ(I). These mono-β-diiminato copper complexes can effectively catalyze methacrylate(MA) polymerization when activated by MMAO. The introduction of fluoro groups into the N-aryl ring of β-diiminato ligands can greatly increase the catalytic activity of copper complexes as well as the molecular weight of PMA.
基金Funded by the Science Foundation of Guangdong Province (No.031598)
文摘Bis (4-(4-amino-3, 5-diethylbenzyl)-2, 6-diethylphenylimino) acenaphthene] di- chloronickel (NiLCl2) was prepared and supported on SiO2 modified by methyl trichlorsilane(S-1) and on SiO2-MgCl2/TiCl4 (S-2) respectively. Two supported catalysts S-1 and S-2 used as catalysts for ethylene polymerization were studied and the influences of various polymerization conditions, including the polymerization temperature, cocatalysts, Al/Ni molar ratio on the catalytic activity, branching degree and branch length of PE were also investigated. The experimental results show that the supported catalysts exhibit higher catalytic activity for ethylene polymerization, the highest catalytic activity of S-1 using AlEt2Cl as cocatalyst at 50 ℃, reaching 5.8×10^5gPE/molNi·h, and needed lower Al/Ni molar ratio compared to homogeneous analogue.
基金supported by the National Natural Science Foundation of China (20972025)the China National Petroleum Corporation (CNPC)Innovation Foundation (2010D-5006-0504)+1 种基金Scientific Research Foundation for the Returned Overseas Chinese Scholars,Heilongjiang Province(41417837-8-08016)Scientific Research Foundation for Overseas Chinese Scholars,Department of education of Heilongjiang Province(1154H14)
文摘Late-transition-metal(LTM) catalysts are a family of very flexible ethylene polymerization catalysts because their catalytic performance can be easily adjusted by modifying the ligand structure.Their less oxyphilicity character,which may promote the production of copolymers from ethylene and polar comonomers,is another aspect that attracts much attention in both academic and industrial fields.The immobilization of LTM catalysts on spherical supports is a crucial step prior to their use in the industrial processes of gas-phase or slurry polymerizations.This paper reviews recent developments in supported LTM catalysts for olefin polymerization,and summarizes loading methods and mechanisms of the immobilization of LTM catalysts on inorganic,organic,and inorganic-organic materials,and the effects of immobilization on catalytic activity,polymerization mechanism,and polymer morphology.
文摘Ethylene oligomerization has been investigated by using catalyst systemscomposed of nickel (II) diimine complexes (diimine = N, N′-o-phenylene bis(salicylideneaminato), N,N′-o-phenyl-enebisbenzal, N, N′-ethylenebisbenzal) and ethylaluminoxane (EAO). The main productsin toluene and at 110―200℃ were olefins with low carbon numbers (C_4―C_(10)). Effects of reactiontemperature, Al/Ni molar ratio and reaction period on both the catalytic activity and productdistribution were explored. The activity of 1.84 x 10~5 g of oligomer/(mol_(Ni)·h), with 87.4% ofselectivity to C_4―C_(10) olefins, was attained at 200℃ in the reaction when a catalyst composedof NiCl_2-(PhCH= o-NC_6H_4N= CHPh) and EAO was used.
基金supported by the National Natural Science Foundation of China (20972025,U1362110)the China National Petroleum Corporation (CNPC) Innovation Foundation (2013D-5006-0503)+1 种基金the Scientific Research Foundation for the Returned Overseas Chinese Scholars,Heilongjiang Province (41417837-8-08016)the Scientific Research Foundation for Overseas Chinese Scholars,Department of Education of Heilongjiang Province (1154H14)
文摘Researches of late-transition metal complexes for ethylene polymerization and oligomerization have attracted a lot of attention in the last two decades.A large number of late-transition metal complexes with symmetric diimine ligands have been extensively studied.Although the research of unsymmetric diimine late-transition metal complexes was still in the initial stage,some superior performances were observed in olefin polymerization.Recent developments in the research of ethylene polymerization and oligomerization catalyzed by late-transition metal complexes with unsymmetric diimine ligands were summarized in this review,with the influence of complex structure on the catalytic performance of the catalyst analyzed.
文摘制备了N,N-二(2,6-二异丙基苯基)苊二亚胺氯化镍,与A lE t2C l组成催化体系,催化4-乙烯基吡啶(4-VP)的聚合。研究表明,该催化体系可以有效地催化4-乙烯基吡啶聚合,并具有较高的活性,聚合条件如单体浓度、铝镍摩尔比、聚合温度和聚合时间等对4-乙烯基吡啶的聚合反应活性有较大的影响。最佳反应条件是单体浓度为0.6 m o l/L、n(A l)/n(N i)为800、温度为30℃,这时催化活性达到47.2 kg P(4-VP)/m o l N i.h。