The molecular behavior of polyurethane(PU)coating materials during the surface adsorption of poly-α-olefin as a drag reducing polymer was explored by a molecular dynamics simulation.Three different PU capsule wall ma...The molecular behavior of polyurethane(PU)coating materials during the surface adsorption of poly-α-olefin as a drag reducing polymer was explored by a molecular dynamics simulation.Three different PU capsule wall materials were synthesized using two reaction monomers,and a poly-α-olefin/PU drag reducer microcapsule was prepared based on interface polymerization.The structure,morphology,thermal stability,compressive strength,and drag reduction performance of the microcapsules were characterized and compared.The results showed that a non-bonding interaction induced the adsorption of the PU coating material,poly-α-olefin and PU then fused at the interface,and the PU coating material was embedded into the inner grooves of poly-α-olefin in the form of a local mosaic,thereby forming a stable core–shell structure.The morphological characterization indicated that PU and poly-α-olefin could form microcapsule structures.The thermal decomposition temperature of the microcapsule was dependent on the type of capsule wall material.The microcapsule structure had a slight effect on poly-α-olefin drag reduction.The system enabled poly-α-olefin to exist in powdered particles through microcapsulation,and had a good dispersion effect that facilitated storage and transport processes.The method effectively inhibited the accumulation and bonding of poly-α-olefin at room temperature.展开更多
The production of poly-α-olefins(PAOs)has attracted attention due to their excellent viscosity-temperature dependence,wear characteristics,oxidative properties,and high thermal stability.In this study,indene extracte...The production of poly-α-olefins(PAOs)has attracted attention due to their excellent viscosity-temperature dependence,wear characteristics,oxidative properties,and high thermal stability.In this study,indene extracted during coal tar refining was used as a raw material to synthesize a bis(indenyl)zirconium dichloride metallocene catalyst.A PAO with low viscosity and a high viscosity index was produced via the oligomerization of 1-decene in the presence of both the prepared metallocene and a methylaluminoxane(MAO)co-catalyst.Notably,the effects of different synthesis reaction parameters,such as Al:Zr ratio,amount of catalyst,and reaction temperature,on the conversion ratio and product selectivity were investigated in detail.The produced PAO was thoroughly characterized using Fourier-transform infrared,^(13)C,and^(1)H nuclear magnetic resonance spectroscopies;gas chromatography;and viscosity measurements.At 70℃,the metallocene catalyst created more stable active sites.In addition,the alkylation effect of MAO was noticeable.Interestingly,the obtained catalysis results demonstrated that a high conversion ratio of~93%was achieved at a low reaction temperature of 70℃,with a catalyst dosage of 0.0848 mmol and Al:Zr ratio of 8.48mmol:0.0848mmol.Moreover,under these optimal conditions,the kinematic viscosity of PAO was 4.25 mm2/s at 100℃,and the viscosity index was 139,indicating good viscosity-temperature properties.展开更多
Microcapsules containing oil drag-reducing polymer particles were prepared by melting-scattering and condensing of polyethylene wax,in-situ polymerization of urea and formaldehyde,and interfacial polymerization of sty...Microcapsules containing oil drag-reducing polymer particles were prepared by melting-scattering and condensing of polyethylene wax,in-situ polymerization of urea and formaldehyde,and interfacial polymerization of styrene respectively.The related processes were studied by a molecular dynamics simulation method,and molecular design of microcapsule isolation agent was carried out on the basis of the simulation.The technologies for preparing microencapsulated oil drag-reducing polymer particles were compared and the circulation drag reducing efficiency of the microencapsulated polymer particles was evaluated based on the characterization results and their dissolution properties.Molecular design of a microcapsule isolation agent suggests that a-olefin polymer particles can be stably dispersed in water by using long-chain alkyl sodium salt surfactant which can prevent the agglomeration ofα-olefin polymer particles.The results of simulation of the adsorption process shows that the amount of alkyl sodium salt surfactant can directly affect the stability of microencapsulatedα-olefin polymer particles, and there must be a minimum critical amount of it.After characterization of the morphology by Scanning Electron Microscopy(SEM) and comparison of the static pressure stability,especially the conditions of reaction and technological control of microcapsules with different shell materials,microencapsulation of a-olefin polymer particles with poly-(urea-formaldehyde) as shell material was selected as the optimum scheme,because it can react under mild conditions and its technological process can be controlled in a large range.The relationship of drag reducing rate and dissolving time of microcapsules showed that the formation of microcapsules did not affect the maximum drag reducing rate,and the drag reducing rate of each sample can reach about 35%along with the dissolving time,i.e.microencapsulation did not affect the drag reducing property ofα-olefin polymer.展开更多
For living anionic polymerization(LAP),solvent has a great influence on both reaction mechanism and kinetics.In this work,by using the classical butyl lithium-styrene polymerization as a model system,the effect of sol...For living anionic polymerization(LAP),solvent has a great influence on both reaction mechanism and kinetics.In this work,by using the classical butyl lithium-styrene polymerization as a model system,the effect of solvent on the mechanism and kinetics of LAP was revealed through a strategy combining density functional theory(DFT)calculations and kinetic modeling.In terms of mechanism,it is found that the stronger the solvent polarity,the more electrons transfer from initiator to solvent through detailed energy decomposition analysis of electrostatic interactions between initiator and solvent molecules.Furthermore,we also found that the stronger the solvent polarity,the higher the monomer initiation energy barrier and the smaller the initiation rate coefficient.Counterintuitively,initiation is more favorable at lower temperatures based on the calculated results ofΔG_(TS).Finally,the kinetic characteristics in different solvents were further examined by kinetic modeling.It is found that in benzene and n-pentane,the polymerization rate exhibits first-order kinetics.While,slow initiation and fast propagation were observed in tetrahydrofuran(THF)due to the slow free ion formation rate,leading to a deviation from first-order kinetics.展开更多
Naphthyl-α-diimine nickel complexes with systematically varied ligand sterics, activated by modified methylaluminoxane(MMAO), were tested in the polymerization of higher α-olefin(1-hexene, 1-decene and 1-hexadec...Naphthyl-α-diimine nickel complexes with systematically varied ligand sterics, activated by modified methylaluminoxane(MMAO), were tested in the polymerization of higher α-olefin(1-hexene, 1-decene and 1-hexadecene) under suitable conditions. The polymerization results indicated the possibility of precise microstructure control, depending on catalyst structure, polymerization temperature, monomer concentration and types of monomers, which in turn strongly affects the resultant polymer properties. Naphthyl-α-diimine nickel complex bearing chiral bulky sec-phenethyl groups in the o-naphthyl position showed good catalytic activity, and resulted in branched polymers(42-88/1000 C) with high molecular weights(Mn:(4.3-15.2) × 10^4 g·mol^-1) and narrow molecular weight distribution(Mw/Mn = 1.13-1.29, RT), which suggested a living polymerization. The increasing steric hindrance of catalyst leads to enhance insertion for 2,1-insertion of α-olefin and the chain-walking reaction.展开更多
Polymerizations of linear α-olefins(CnH2n, CH2=CH―R, R = Cn-2) catalyzed by early transition metals typically afford amorphous polymers with alkyl chains(Cn-2), while chain-straightening polymerizations of α-olefin...Polymerizations of linear α-olefins(CnH2n, CH2=CH―R, R = Cn-2) catalyzed by early transition metals typically afford amorphous polymers with alkyl chains(Cn-2), while chain-straightening polymerizations of α-olefins with nickel-based catalysts produce semicrystalline polyolefins. Polymerizations of various α-olefins were carried out using an α-diamine nickel catalyst with a significantly distorted chelating ring. The influences of temperature, monomer concentration, and chain length of α-olefins on polyolefin microstructure were examined in detail. The α-diamine nickel catalyst realized highly regioselective 2,1-insertion of α-olefins regardless of reaction temperature and monomer concentration. Increased chain length of α-olefins led to the formation of more linear polyolefin.Semicrystalline polyolefins with high melting temperatures(Tm) were made from α-olefins through highly regioselective 2,1-insertion and precise chain-straightening.展开更多
Poly-α-olefin(PAO)synthetic oil,a regular long-chain alkane produced from the catalytic polymerization ofα-olefin,is a high-quality lubricating base oil with huge market potential.In this study,PAO synthesis based o...Poly-α-olefin(PAO)synthetic oil,a regular long-chain alkane produced from the catalytic polymerization ofα-olefin,is a high-quality lubricating base oil with huge market potential.In this study,PAO synthesis based on the catalytic polymerization of 1-decene using the ionic liquid(IL)[Bmim]_(x)[C_(2)H_(5)NH_(3)]_(1-x)[Al_(2)Cl_(7)]as the catalyst was studied.Compared with the conventional catalyst[Bmim][Al_(2)Cl_(7)],the obtained PAO product incorporates more trimers and tetramers of 1-decene and contains few double-bond end groups,demonstrating a better catalytic system for PAO-10 production.The apparent polymerization kinetics of 1-decene in this catalytic system were studied based on the 1-decene concentration,catalyst concentration,and reaction temperature.An apparent kinetic equation for PAO formation was determined,providing a promising strategy for PAO production using 1-decene polymerization.展开更多
Three unbridged metallocenes, bis(2,4,7-Me3-indenyl)zirconium dichloride(1) , bis(2-Me-4, 7-Et2-indenyl)zirconium dichloride (2) and bis (2, 4, 6-Me3-indenyl) zirconium dichloride (3) were synthesized. The effect of s...Three unbridged metallocenes, bis(2,4,7-Me3-indenyl)zirconium dichloride(1) , bis(2-Me-4, 7-Et2-indenyl)zirconium dichloride (2) and bis (2, 4, 6-Me3-indenyl) zirconium dichloride (3) were synthesized. The effect of solvent polarity on propylene polymerization catalyzed by the metallocenes in the presence of methylaluminoxane(MAO) and triisobutylaluminum(TIBA) was investigated in the toluene/CH2Cl2 mixed solvent. Changing the solvent polarity was found to influence the catalytic activity, polymer molecular weight and stereospecificity of the catalysts. The changes in the position of the substituents on the ligand caused the different responses of the catalyst to the changes in solvent polarity. The isotactic stereosequence of polypropylene was found to increase with the increase in the polarity of the reaction medium.展开更多
Polymer science encompasses a different range of materials critical to industries spanning from packaging to biomedicine. Understanding the synthesis, characterization, and applications of common homopolymers and copo...Polymer science encompasses a different range of materials critical to industries spanning from packaging to biomedicine. Understanding the synthesis, characterization, and applications of common homopolymers and copolymers is fundamental to advancing polymer research and development. In this comprehensive review, we explore various preparation methods, including free radical, anionic, and cationic polymerization, utilized for synthesizing homopolymers and copolymers. Furthermore, we investigate solvent choices commonly employed for polymer characterization, ranging from neat conditions, polar protic and polar aprotic solvents. We also explored characterization techniques, including Fourier Transform Infrared Spectroscopy (FTIR), Nuclear Magnetic Resonance (NMR), Atomic Force Microscopy (AFM), Differential Scanning Calorimetry (DSC), and Thermogravimetric Analysis (TGA). In addition to industrial applications, we highlight the diverse biological applications of homopolymers, poly(2-hydroxyethyl methacrylate) (pHEMA) and polystyrene, which find its extensive use in biomedicine. By synthesizing and analyzing this wealth of information, this review aims to provide a comprehensive understanding of the synthesis, characterization, and applications of homopolymers and copolymers, with a particular focus on their biological applications. This holistic approach not only contributes to advancements in polymer science and technology but also fosters innovation in biomedicine, ultimately benefiting human health and well-being.展开更多
Although a great progress has been achieved for the development of NF membranes and technologies and SRNF do show a great potential in the separation of organic components, an NF membrane with good separation performa...Although a great progress has been achieved for the development of NF membranes and technologies and SRNF do show a great potential in the separation of organic components, an NF membrane with good separation performance and good resistance to organic solvents are urgently needed for a more complicated situation in practical. In this study, a kind of solvent-resistant nanofiltration (SRNF) membrane was fabricated via interfacial polymerization on a laboratory optimized cellulose acetate (CA) basic membrane. The effects of interfacial polymerization parameters, such as water phase concentration, immersed time in the water phase and in the organic phase, on the pure water flux and rejection rate of C-2R yellow dyestuffs were investigated. A highest dye rejection rate of 72.9% could be obtained by water phase solution containing 1% m-xylylenediamine (mXDA) and organic phase solution with 0.2% trimesoyl chloride (TMC) under immersed time in water phase of 6 minutes and in organic phase of 40 seconds. This membrane demonstrated better resistance to methyl alcohol compared to commercial membrane. This study may offer an avenue to develop a solvent-resistant nanofiltration membrane.展开更多
Soluble green light-emitting poly(9,9-dihexylfluorene- co-fluorenone) was synthesized by solvent-free oxidative coupling polymerization of 9,9-dihexylfluorene in a facile one-step reaction. The polymers were charact...Soluble green light-emitting poly(9,9-dihexylfluorene- co-fluorenone) was synthesized by solvent-free oxidative coupling polymerization of 9,9-dihexylfluorene in a facile one-step reaction. The polymers were characterized by FT-IR, ^1H NMR, ^13C NMR, UV-Vis and fluorescence spectroscopy. The region-regular structure of the polymer linking at 2, 7'-position on the fluorene moieties was obtained. The FT-IR spectra of the polymers showed fluorenone vibration. The fluorescence spectra of the solid thin film of the polymers displayed green light-emitting, which was emitted from fluorenone moieties produced in the polymerization process.展开更多
Three ansa-metallocenes(Me_2C)(Me_2Si)Cp_2TiCl_2(1),[(CH_2)_5C](Me_2Si)Cp_2TiCl_2 (2)and (Me_2C)(Me_2Si)Cp_2ZrCl_2 (3)with larger dihedral angles and longer distance from metal to the center of Cp planes were synthesi...Three ansa-metallocenes(Me_2C)(Me_2Si)Cp_2TiCl_2(1),[(CH_2)_5C](Me_2Si)Cp_2TiCl_2 (2)and (Me_2C)(Me_2Si)Cp_2ZrCl_2 (3)with larger dihedral angles and longer distance from metal to the center of Cp planes were synthesized and used as catalysts for ethylene polymerization in the presence of methylaluminoxane (MAO).In the case of ethylene polymerization,compared the feature structures of unbridged metallocenes, singly bridged metallocenes and doubly bridged metallocenes 1,2,3,there exhibit the relationship bet...展开更多
In the practical use for the production of the α-olefins, it is highly desired to develop a novel heterogeneous catalyst system. The metal complexes immobilized into the clay interlayers show a great potential as het...In the practical use for the production of the α-olefins, it is highly desired to develop a novel heterogeneous catalyst system. The metal complexes immobilized into the clay interlayers show a great potential as heterogeneous catalysts due to their excellent processability. In this study, nine types of heterogeneous procatalyst Ln/Ni2+-micas were synthesized via a one-pot preparation method, which includes both the condensation reaction of the ligand derivatives and the intercalation of the ligands into the Ni2+ ion-exchanged fluorotetrasilicic mica interlayer. The ligand structures of the prepared procatalysts were [Ln: R-N = C(Nap)-C(Nap) = N-R] [(Nap = 1,8-naphthdiyl) (L1, R = 2-MePh;L2, R = 2-FPh;L3, R = 2-BrPh;L4, R = 4-MePh;L5, R = 4-FPh;L6, R = 4-BrPh;L7, R = 2,4-F2Ph;L8, R = 2,4-Br2Ph;L9, R = 2,6-F2Ph). At 50℃ and 0.7 MPaethylene pressure, the triisobutylaluminum-activated L1-L6/Ni2+-mica showed a catalytic activity for the ethylene oligo-/polymerization in the range of 334 - 549 g-ethylene•g-cat–1•h–1. A high catalyst activity was obtained when the substituent having a larger steric bulk than that of a methyl substituent was introduced at the ortho-position of the aryl rings. The introduction of the fluorine substituent as a strong electron-withdrawing group to the para-position also increased the catalytic activity. The L2, L4, L5, and L6/Ni2+-micas showed moderate selectivities to oligomers consisting of C4-C20 in the range of 19.9 - 41.6 wt% at 50℃. The calculated Schulz-Flory constants α based on the mole fraction of C12 and C14 were within 0.61 - 0.78.展开更多
The exploitation of new green polymerization avenues for the effective synthesis of polymers by reversible-deactivation radical polymerization plays a critical role in pursuing the development of polymeric materials.I...The exploitation of new green polymerization avenues for the effective synthesis of polymers by reversible-deactivation radical polymerization plays a critical role in pursuing the development of polymeric materials.In this work,serials of deep eutectic solvents(DES)with intermolecular-hydrogen-bonding interaction were constructed as catalysts and medium for actuating reversible complexation-mediated polymerization(RCMP)for the first time,yielding methacrylate polymers with high monomer conversion and narrow dispersion molecular weight in both water and oil systems.The mechanism and elementary reaction of RCMP were explored deeply,revealing that the complexation of initiator with DES to generate radicals was a ratecontrolling step and intermolecular-hydrogen-bond was primary factor to influence polymerization rate.Moreover,the insights of density functional theory calculations revealed that negative electrostatic potential ensured nucleophilic capacity.This investigation demonstrated the considerable potential of DES for RCMP,which is anticipated for other polymerization applications as a novel medium mode.展开更多
This paper reports an efficient method of preparing porous polymeric microspheres by solvent evaporation in foam phase,in which phase separation between polymer and porogen occurs in foam phase instead of that in wate...This paper reports an efficient method of preparing porous polymeric microspheres by solvent evaporation in foam phase,in which phase separation between polymer and porogen occurs in foam phase instead of that in water phase by using the traditional solvent eva poration method.The method provides outstanding features,including being time-saving,of high-yield and able for continuous production,in which formation of porous polymeric microspheres finished within 3 min with a high production yield up to approximate 95 wt% and the process was able to be developed into a continuous process for production of porous polymeric microspheres.It was also universal to non-crosslinked polymers since the method is a development on the traditional emulsion solvent evaporation method.The new method is efficient and can be used potentially on the industrial scale for continuous production of porous polymeric microsphere s.展开更多
Separation of organic mixture is an inevitable process in most modern industrial processes. In the quest for a more sustainable and efficient separation, solvent-resistant nanofiltration(SRNF) has emerged as a promisi...Separation of organic mixture is an inevitable process in most modern industrial processes. In the quest for a more sustainable and efficient separation, solvent-resistant nanofiltration(SRNF) has emerged as a promising answer. This is because SRNF is a membrane-based process which offers the key advantages of high efficacy and low energy intensity separation. In particular, polymer-based membranes can offer compelling opportunities for SRNF with unprecedented cost-effectiveness. As a result, intensive research efforts have been devoted into developing novel polymer-based membranes with solvent-resistant capacities as well as exploring potential applications in different types of industries. In this review, we aim to give an overview of the recent progress in the development of the state-of-the-art polymer-based membranes for SRNF in the first section. Emerging nanomaterials for mixed matrix and thin film nanocomposite membranes are also covered in this section. This is followed by a discussion on the current status of membrane engineering and SRNF membrane commercialization. In the third section, we highlight recent efforts in adopting SRNF for relevant industrial applications such as food, bio-refinery, petrochemical, fine chemical and pharmaceutical industries followed by separations of enantiomers in stereochemistry, homogeneous catalysis and ionic liquids. Finally, we offer a perspective and provide deeper insights to help shape future research direction in this very important field of SRNF.展开更多
The diffusion coefficients(Dapp) and the heterogeneous electron transfer rate constants(ks)for ferrocene in several polymer solvents were determined by using steady-stae voltammetry. Thetemperature dependence of the t...The diffusion coefficients(Dapp) and the heterogeneous electron transfer rate constants(ks)for ferrocene in several polymer solvents were determined by using steady-stae voltammetry. Thetemperature dependence of the two parameters indicates Arrhenius behavior. The polymer solventeffects on diffusion and electron transfer dynamics of ferrocene were discussed展开更多
Novel Ni(II)-based acetyliminopyridine complexes 1b, 2b, 3b (1-3b), which are synthesized from ligands 1a, 2a, 3a (1-3a) and [NiCl2(DME)], are suitable precursors for the catalysts that are necessary for ethyl...Novel Ni(II)-based acetyliminopyridine complexes 1b, 2b, 3b (1-3b), which are synthesized from ligands 1a, 2a, 3a (1-3a) and [NiCl2(DME)], are suitable precursors for the catalysts that are necessary for ethylene oligomerization and polymerization reactions, activated by methylaluminoxane (MAO). The MAO-treated 1-3b presents an active catalytic center, which may oligomerize and polymerize ethylene to produce linear α-olefins and polyethylene, respectively. The molecular weight distributions of oligomers that are obtained are in good agreement with the Schulz-Flory rules for oligomers〉C4. The activity of 3b-MAO complex is 6.3×10^7 g/(molNi.h) at 50 ℃. The activities and molecular weight distributions of oligomers show significant reliance on the structures of catalyst precursors.展开更多
The present paper describes experiments aimed at delineating significant chemical characteristics of electrochemical reactions in polymeric solutions, including how rigid solvent environments affect mass transport rat...The present paper describes experiments aimed at delineating significant chemical characteristics of electrochemical reactions in polymeric solutions, including how rigid solvent environments affect mass transport rates, and also discusses the possibility that the microelectrode coated with poly(ethylene oxide)(PEO) film can be used as gas sensor.展开更多
The Vrentas-Duda free-volume theory has been extensively used tocorrelated or predict the solvent diffusion coefficient of apolymer/solvent system. The energy term in the free volume diffusionequation is difficult to ...The Vrentas-Duda free-volume theory has been extensively used tocorrelated or predict the solvent diffusion coefficient of apolymer/solvent system. The energy term in the free volume diffusionequation is difficult to estimate, so the energy term was usuallyneglected in previous predictive versions of the free volumediffusion coefficient equation. Recent studies show that the energyeffect is very important even above the glass transition temperatureof the system. In this paper, a new evaluating method of the energyterm is proposed, that is, the diffusion energy at different solventconcentrations is assumed to be a linear function of the solventdiffusion energy in pure solvents and that in polymers under thecondition that the solvent in infinite dilution.展开更多
基金This paper is supported by the Shandong Provincial Key Research and Development Program(Project No.2020CXGC010403)the Key Projects of New and Old Kinetic Energy Conversion(No.[2020]1220)the scientific research project of SINOPEC Corporation(CLY19005).
文摘The molecular behavior of polyurethane(PU)coating materials during the surface adsorption of poly-α-olefin as a drag reducing polymer was explored by a molecular dynamics simulation.Three different PU capsule wall materials were synthesized using two reaction monomers,and a poly-α-olefin/PU drag reducer microcapsule was prepared based on interface polymerization.The structure,morphology,thermal stability,compressive strength,and drag reduction performance of the microcapsules were characterized and compared.The results showed that a non-bonding interaction induced the adsorption of the PU coating material,poly-α-olefin and PU then fused at the interface,and the PU coating material was embedded into the inner grooves of poly-α-olefin in the form of a local mosaic,thereby forming a stable core–shell structure.The morphological characterization indicated that PU and poly-α-olefin could form microcapsule structures.The thermal decomposition temperature of the microcapsule was dependent on the type of capsule wall material.The microcapsule structure had a slight effect on poly-α-olefin drag reduction.The system enabled poly-α-olefin to exist in powdered particles through microcapsulation,and had a good dispersion effect that facilitated storage and transport processes.The method effectively inhibited the accumulation and bonding of poly-α-olefin at room temperature.
基金supported by the Chinese Academy of Sciences Strategic Pilot Science and Technology Special (Class A)(XDA21020000)the National Natural Science Foundation of China (22072175,21673272)support from the Ulam program,awarded by the Polish National Agency for Academic Exchange (NAWA),Poland,under project No.PPN/ULM/2020/1/00006/DEC/1
文摘The production of poly-α-olefins(PAOs)has attracted attention due to their excellent viscosity-temperature dependence,wear characteristics,oxidative properties,and high thermal stability.In this study,indene extracted during coal tar refining was used as a raw material to synthesize a bis(indenyl)zirconium dichloride metallocene catalyst.A PAO with low viscosity and a high viscosity index was produced via the oligomerization of 1-decene in the presence of both the prepared metallocene and a methylaluminoxane(MAO)co-catalyst.Notably,the effects of different synthesis reaction parameters,such as Al:Zr ratio,amount of catalyst,and reaction temperature,on the conversion ratio and product selectivity were investigated in detail.The produced PAO was thoroughly characterized using Fourier-transform infrared,^(13)C,and^(1)H nuclear magnetic resonance spectroscopies;gas chromatography;and viscosity measurements.At 70℃,the metallocene catalyst created more stable active sites.In addition,the alkylation effect of MAO was noticeable.Interestingly,the obtained catalysis results demonstrated that a high conversion ratio of~93%was achieved at a low reaction temperature of 70℃,with a catalyst dosage of 0.0848 mmol and Al:Zr ratio of 8.48mmol:0.0848mmol.Moreover,under these optimal conditions,the kinematic viscosity of PAO was 4.25 mm2/s at 100℃,and the viscosity index was 139,indicating good viscosity-temperature properties.
文摘Microcapsules containing oil drag-reducing polymer particles were prepared by melting-scattering and condensing of polyethylene wax,in-situ polymerization of urea and formaldehyde,and interfacial polymerization of styrene respectively.The related processes were studied by a molecular dynamics simulation method,and molecular design of microcapsule isolation agent was carried out on the basis of the simulation.The technologies for preparing microencapsulated oil drag-reducing polymer particles were compared and the circulation drag reducing efficiency of the microencapsulated polymer particles was evaluated based on the characterization results and their dissolution properties.Molecular design of a microcapsule isolation agent suggests that a-olefin polymer particles can be stably dispersed in water by using long-chain alkyl sodium salt surfactant which can prevent the agglomeration ofα-olefin polymer particles.The results of simulation of the adsorption process shows that the amount of alkyl sodium salt surfactant can directly affect the stability of microencapsulatedα-olefin polymer particles, and there must be a minimum critical amount of it.After characterization of the morphology by Scanning Electron Microscopy(SEM) and comparison of the static pressure stability,especially the conditions of reaction and technological control of microcapsules with different shell materials,microencapsulation of a-olefin polymer particles with poly-(urea-formaldehyde) as shell material was selected as the optimum scheme,because it can react under mild conditions and its technological process can be controlled in a large range.The relationship of drag reducing rate and dissolving time of microcapsules showed that the formation of microcapsules did not affect the maximum drag reducing rate,and the drag reducing rate of each sample can reach about 35%along with the dissolving time,i.e.microencapsulation did not affect the drag reducing property ofα-olefin polymer.
基金financially supported by the National Natural Science Foundation of China(U21A20313,22222807)。
文摘For living anionic polymerization(LAP),solvent has a great influence on both reaction mechanism and kinetics.In this work,by using the classical butyl lithium-styrene polymerization as a model system,the effect of solvent on the mechanism and kinetics of LAP was revealed through a strategy combining density functional theory(DFT)calculations and kinetic modeling.In terms of mechanism,it is found that the stronger the solvent polarity,the more electrons transfer from initiator to solvent through detailed energy decomposition analysis of electrostatic interactions between initiator and solvent molecules.Furthermore,we also found that the stronger the solvent polarity,the higher the monomer initiation energy barrier and the smaller the initiation rate coefficient.Counterintuitively,initiation is more favorable at lower temperatures based on the calculated results ofΔG_(TS).Finally,the kinetic characteristics in different solvents were further examined by kinetic modeling.It is found that in benzene and n-pentane,the polymerization rate exhibits first-order kinetics.While,slow initiation and fast propagation were observed in tetrahydrofuran(THF)due to the slow free ion formation rate,leading to a deviation from first-order kinetics.
基金financially supported by the Fundamental Research Funds for the Central Universities (WK2060200025)Advanced Catalysis and Green Manufacturing Collaborative Innovation Center (ACGM2016-06-01)Yixing Taodu Ying Cai Program
文摘Naphthyl-α-diimine nickel complexes with systematically varied ligand sterics, activated by modified methylaluminoxane(MMAO), were tested in the polymerization of higher α-olefin(1-hexene, 1-decene and 1-hexadecene) under suitable conditions. The polymerization results indicated the possibility of precise microstructure control, depending on catalyst structure, polymerization temperature, monomer concentration and types of monomers, which in turn strongly affects the resultant polymer properties. Naphthyl-α-diimine nickel complex bearing chiral bulky sec-phenethyl groups in the o-naphthyl position showed good catalytic activity, and resulted in branched polymers(42-88/1000 C) with high molecular weights(Mn:(4.3-15.2) × 10^4 g·mol^-1) and narrow molecular weight distribution(Mw/Mn = 1.13-1.29, RT), which suggested a living polymerization. The increasing steric hindrance of catalyst leads to enhance insertion for 2,1-insertion of α-olefin and the chain-walking reaction.
基金financially supported by the National Natural Science Foundation of China (Nos. 21674130, 51873234)Natural Science Foundation of Guangdong Province (No. 2017A030310 349)+1 种基金Fundamental Research Funds for the Central Universities (No. 17lgjc02)PetroChina Innovation Foundation (No. 2017D-5007-0505)
文摘Polymerizations of linear α-olefins(CnH2n, CH2=CH―R, R = Cn-2) catalyzed by early transition metals typically afford amorphous polymers with alkyl chains(Cn-2), while chain-straightening polymerizations of α-olefins with nickel-based catalysts produce semicrystalline polyolefins. Polymerizations of various α-olefins were carried out using an α-diamine nickel catalyst with a significantly distorted chelating ring. The influences of temperature, monomer concentration, and chain length of α-olefins on polyolefin microstructure were examined in detail. The α-diamine nickel catalyst realized highly regioselective 2,1-insertion of α-olefins regardless of reaction temperature and monomer concentration. Increased chain length of α-olefins led to the formation of more linear polyolefin.Semicrystalline polyolefins with high melting temperatures(Tm) were made from α-olefins through highly regioselective 2,1-insertion and precise chain-straightening.
基金supported by the Key Research and Development Program of Ningxia Autonomous Region (No.2023BFE01001)Tianjin Science and Technology Program (Nos.22ZYJDSS00060+2 种基金22YDTPJC00920)Program for Tianjin Innovative Research Team in Universities (No.TD13-5031)Tianjin 131 Research Team of Innovative Talents。
文摘Poly-α-olefin(PAO)synthetic oil,a regular long-chain alkane produced from the catalytic polymerization ofα-olefin,is a high-quality lubricating base oil with huge market potential.In this study,PAO synthesis based on the catalytic polymerization of 1-decene using the ionic liquid(IL)[Bmim]_(x)[C_(2)H_(5)NH_(3)]_(1-x)[Al_(2)Cl_(7)]as the catalyst was studied.Compared with the conventional catalyst[Bmim][Al_(2)Cl_(7)],the obtained PAO product incorporates more trimers and tetramers of 1-decene and contains few double-bond end groups,demonstrating a better catalytic system for PAO-10 production.The apparent polymerization kinetics of 1-decene in this catalytic system were studied based on the 1-decene concentration,catalyst concentration,and reaction temperature.An apparent kinetic equation for PAO formation was determined,providing a promising strategy for PAO production using 1-decene polymerization.
基金National Natural Science Foundation of China and SINOPEC(No.29734144).
文摘Three unbridged metallocenes, bis(2,4,7-Me3-indenyl)zirconium dichloride(1) , bis(2-Me-4, 7-Et2-indenyl)zirconium dichloride (2) and bis (2, 4, 6-Me3-indenyl) zirconium dichloride (3) were synthesized. The effect of solvent polarity on propylene polymerization catalyzed by the metallocenes in the presence of methylaluminoxane(MAO) and triisobutylaluminum(TIBA) was investigated in the toluene/CH2Cl2 mixed solvent. Changing the solvent polarity was found to influence the catalytic activity, polymer molecular weight and stereospecificity of the catalysts. The changes in the position of the substituents on the ligand caused the different responses of the catalyst to the changes in solvent polarity. The isotactic stereosequence of polypropylene was found to increase with the increase in the polarity of the reaction medium.
文摘Polymer science encompasses a different range of materials critical to industries spanning from packaging to biomedicine. Understanding the synthesis, characterization, and applications of common homopolymers and copolymers is fundamental to advancing polymer research and development. In this comprehensive review, we explore various preparation methods, including free radical, anionic, and cationic polymerization, utilized for synthesizing homopolymers and copolymers. Furthermore, we investigate solvent choices commonly employed for polymer characterization, ranging from neat conditions, polar protic and polar aprotic solvents. We also explored characterization techniques, including Fourier Transform Infrared Spectroscopy (FTIR), Nuclear Magnetic Resonance (NMR), Atomic Force Microscopy (AFM), Differential Scanning Calorimetry (DSC), and Thermogravimetric Analysis (TGA). In addition to industrial applications, we highlight the diverse biological applications of homopolymers, poly(2-hydroxyethyl methacrylate) (pHEMA) and polystyrene, which find its extensive use in biomedicine. By synthesizing and analyzing this wealth of information, this review aims to provide a comprehensive understanding of the synthesis, characterization, and applications of homopolymers and copolymers, with a particular focus on their biological applications. This holistic approach not only contributes to advancements in polymer science and technology but also fosters innovation in biomedicine, ultimately benefiting human health and well-being.
文摘Although a great progress has been achieved for the development of NF membranes and technologies and SRNF do show a great potential in the separation of organic components, an NF membrane with good separation performance and good resistance to organic solvents are urgently needed for a more complicated situation in practical. In this study, a kind of solvent-resistant nanofiltration (SRNF) membrane was fabricated via interfacial polymerization on a laboratory optimized cellulose acetate (CA) basic membrane. The effects of interfacial polymerization parameters, such as water phase concentration, immersed time in the water phase and in the organic phase, on the pure water flux and rejection rate of C-2R yellow dyestuffs were investigated. A highest dye rejection rate of 72.9% could be obtained by water phase solution containing 1% m-xylylenediamine (mXDA) and organic phase solution with 0.2% trimesoyl chloride (TMC) under immersed time in water phase of 6 minutes and in organic phase of 40 seconds. This membrane demonstrated better resistance to methyl alcohol compared to commercial membrane. This study may offer an avenue to develop a solvent-resistant nanofiltration membrane.
基金Supported by the National Natural Science Foundation of China (20274031)
文摘Soluble green light-emitting poly(9,9-dihexylfluorene- co-fluorenone) was synthesized by solvent-free oxidative coupling polymerization of 9,9-dihexylfluorene in a facile one-step reaction. The polymers were characterized by FT-IR, ^1H NMR, ^13C NMR, UV-Vis and fluorescence spectroscopy. The region-regular structure of the polymer linking at 2, 7'-position on the fluorene moieties was obtained. The FT-IR spectra of the polymers showed fluorenone vibration. The fluorescence spectra of the solid thin film of the polymers displayed green light-emitting, which was emitted from fluorenone moieties produced in the polymerization process.
基金the National Natural Science Foundation of China(No.50573018)
文摘Three ansa-metallocenes(Me_2C)(Me_2Si)Cp_2TiCl_2(1),[(CH_2)_5C](Me_2Si)Cp_2TiCl_2 (2)and (Me_2C)(Me_2Si)Cp_2ZrCl_2 (3)with larger dihedral angles and longer distance from metal to the center of Cp planes were synthesized and used as catalysts for ethylene polymerization in the presence of methylaluminoxane (MAO).In the case of ethylene polymerization,compared the feature structures of unbridged metallocenes, singly bridged metallocenes and doubly bridged metallocenes 1,2,3,there exhibit the relationship bet...
文摘In the practical use for the production of the α-olefins, it is highly desired to develop a novel heterogeneous catalyst system. The metal complexes immobilized into the clay interlayers show a great potential as heterogeneous catalysts due to their excellent processability. In this study, nine types of heterogeneous procatalyst Ln/Ni2+-micas were synthesized via a one-pot preparation method, which includes both the condensation reaction of the ligand derivatives and the intercalation of the ligands into the Ni2+ ion-exchanged fluorotetrasilicic mica interlayer. The ligand structures of the prepared procatalysts were [Ln: R-N = C(Nap)-C(Nap) = N-R] [(Nap = 1,8-naphthdiyl) (L1, R = 2-MePh;L2, R = 2-FPh;L3, R = 2-BrPh;L4, R = 4-MePh;L5, R = 4-FPh;L6, R = 4-BrPh;L7, R = 2,4-F2Ph;L8, R = 2,4-Br2Ph;L9, R = 2,6-F2Ph). At 50℃ and 0.7 MPaethylene pressure, the triisobutylaluminum-activated L1-L6/Ni2+-mica showed a catalytic activity for the ethylene oligo-/polymerization in the range of 334 - 549 g-ethylene•g-cat–1•h–1. A high catalyst activity was obtained when the substituent having a larger steric bulk than that of a methyl substituent was introduced at the ortho-position of the aryl rings. The introduction of the fluorine substituent as a strong electron-withdrawing group to the para-position also increased the catalytic activity. The L2, L4, L5, and L6/Ni2+-micas showed moderate selectivities to oligomers consisting of C4-C20 in the range of 19.9 - 41.6 wt% at 50℃. The calculated Schulz-Flory constants α based on the mole fraction of C12 and C14 were within 0.61 - 0.78.
基金financially supported by the State Key Program of National Natural Science Foundation of China(U21A20313)the Key Program of Qingyuan Innovation Laboratory(00221003)+2 种基金the“111”Program of Fuzhou Universitythe Natural Science Foundation of Fujian Province(2019J05040)the China Postdoctoral Science Foundation(2022M20739)。
文摘The exploitation of new green polymerization avenues for the effective synthesis of polymers by reversible-deactivation radical polymerization plays a critical role in pursuing the development of polymeric materials.In this work,serials of deep eutectic solvents(DES)with intermolecular-hydrogen-bonding interaction were constructed as catalysts and medium for actuating reversible complexation-mediated polymerization(RCMP)for the first time,yielding methacrylate polymers with high monomer conversion and narrow dispersion molecular weight in both water and oil systems.The mechanism and elementary reaction of RCMP were explored deeply,revealing that the complexation of initiator with DES to generate radicals was a ratecontrolling step and intermolecular-hydrogen-bond was primary factor to influence polymerization rate.Moreover,the insights of density functional theory calculations revealed that negative electrostatic potential ensured nucleophilic capacity.This investigation demonstrated the considerable potential of DES for RCMP,which is anticipated for other polymerization applications as a novel medium mode.
基金financially supported by National Natural Science Foundation of China (22068018, 21466016 and 51863011)Natural Science Foundation of Yunnan Province (2016FB024)Yunnan Ten Thousand Talents Plan Young & Elite Talents Project。
文摘This paper reports an efficient method of preparing porous polymeric microspheres by solvent evaporation in foam phase,in which phase separation between polymer and porogen occurs in foam phase instead of that in water phase by using the traditional solvent eva poration method.The method provides outstanding features,including being time-saving,of high-yield and able for continuous production,in which formation of porous polymeric microspheres finished within 3 min with a high production yield up to approximate 95 wt% and the process was able to be developed into a continuous process for production of porous polymeric microspheres.It was also universal to non-crosslinked polymers since the method is a development on the traditional emulsion solvent evaporation method.The new method is efficient and can be used potentially on the industrial scale for continuous production of porous polymeric microsphere s.
基金funding support from the Singapore Economic Development Board to Singapore Membrane Technology Center
文摘Separation of organic mixture is an inevitable process in most modern industrial processes. In the quest for a more sustainable and efficient separation, solvent-resistant nanofiltration(SRNF) has emerged as a promising answer. This is because SRNF is a membrane-based process which offers the key advantages of high efficacy and low energy intensity separation. In particular, polymer-based membranes can offer compelling opportunities for SRNF with unprecedented cost-effectiveness. As a result, intensive research efforts have been devoted into developing novel polymer-based membranes with solvent-resistant capacities as well as exploring potential applications in different types of industries. In this review, we aim to give an overview of the recent progress in the development of the state-of-the-art polymer-based membranes for SRNF in the first section. Emerging nanomaterials for mixed matrix and thin film nanocomposite membranes are also covered in this section. This is followed by a discussion on the current status of membrane engineering and SRNF membrane commercialization. In the third section, we highlight recent efforts in adopting SRNF for relevant industrial applications such as food, bio-refinery, petrochemical, fine chemical and pharmaceutical industries followed by separations of enantiomers in stereochemistry, homogeneous catalysis and ionic liquids. Finally, we offer a perspective and provide deeper insights to help shape future research direction in this very important field of SRNF.
文摘The diffusion coefficients(Dapp) and the heterogeneous electron transfer rate constants(ks)for ferrocene in several polymer solvents were determined by using steady-stae voltammetry. Thetemperature dependence of the two parameters indicates Arrhenius behavior. The polymer solventeffects on diffusion and electron transfer dynamics of ferrocene were discussed
基金This work is supported by PetroChina Company Limited (No.030414-01)
文摘Novel Ni(II)-based acetyliminopyridine complexes 1b, 2b, 3b (1-3b), which are synthesized from ligands 1a, 2a, 3a (1-3a) and [NiCl2(DME)], are suitable precursors for the catalysts that are necessary for ethylene oligomerization and polymerization reactions, activated by methylaluminoxane (MAO). The MAO-treated 1-3b presents an active catalytic center, which may oligomerize and polymerize ethylene to produce linear α-olefins and polyethylene, respectively. The molecular weight distributions of oligomers that are obtained are in good agreement with the Schulz-Flory rules for oligomers〉C4. The activity of 3b-MAO complex is 6.3×10^7 g/(molNi.h) at 50 ℃. The activities and molecular weight distributions of oligomers show significant reliance on the structures of catalyst precursors.
文摘The present paper describes experiments aimed at delineating significant chemical characteristics of electrochemical reactions in polymeric solutions, including how rigid solvent environments affect mass transport rates, and also discusses the possibility that the microelectrode coated with poly(ethylene oxide)(PEO) film can be used as gas sensor.
基金Supported by the National Nature Science Foundation of China (No. 20076038).
文摘The Vrentas-Duda free-volume theory has been extensively used tocorrelated or predict the solvent diffusion coefficient of apolymer/solvent system. The energy term in the free volume diffusionequation is difficult to estimate, so the energy term was usuallyneglected in previous predictive versions of the free volumediffusion coefficient equation. Recent studies show that the energyeffect is very important even above the glass transition temperatureof the system. In this paper, a new evaluating method of the energyterm is proposed, that is, the diffusion energy at different solventconcentrations is assumed to be a linear function of the solventdiffusion energy in pure solvents and that in polymers under thecondition that the solvent in infinite dilution.