In this paper, properties of new kind of modified bitumen are presented. Bituminous binder was modified with mix modification using polymer and additive of crumb rubber. Terminal blend process at the refinery was appl...In this paper, properties of new kind of modified bitumen are presented. Bituminous binder was modified with mix modification using polymer and additive of crumb rubber. Terminal blend process at the refinery was applied to produce the mixed modified binder. Laboratory tests were focused on the characterization of the properties of 45/80-55 CR binder with comparison to reference 50/70 and conventional polymer modified 45/80-55 bitumen. Based on conventional binder tests such as penetration, softening point and Fraass breaking point as well as BBR (bending beam rheometer) and DSR (dynamic shear rheometer) tests, rheological properties were investigated. For determination of stability of the polymer and crumb rubber, modified bitumen tube testing method was used. Based on the results analysis, improvement of the viscoelastic properties of polymer and crumb rubber modified bitumen was observed. Conventional properties and stability tests showed that it is possible to pass standard requirements for polymer modified bitumen. Mixed modification and terminal blend allow to use crumb rubber as a modifier with elimination of the separation of crumb rubber during transportation and storage at high temperature. In this paper, experience from filed sections with use of the asphalt mixture with new kind of modified bitumen is presented.展开更多
An epoxy-terminated hyperbranched aromatic polyester (P3) was synthesized from a hyperbranched aromatic polyester containing carboxylic acid end groups (P1), which was derived from the condensation polymerization of t...An epoxy-terminated hyperbranched aromatic polyester (P3) was synthesized from a hyperbranched aromatic polyester containing carboxylic acid end groups (P1), which was derived from the condensation polymerization of the AB(2) monomer, 5-acetoxyisophthalic acid. Polymer P1 was converted into the polymeric acid chloride by reaction with thionyl chloride. The acid chloride was reacted with ethanol and glycidol to form a poly(ethyl ester) (P2) and an epoxy terminated material (P3), respectively. The reaction conditions in each step of these processes had to be controlled very carefully to avoid unwanted cross-linking reactions. The characterization of products and intermediates, including molecular weight distributions and thermal properties, are reported.展开更多
文摘In this paper, properties of new kind of modified bitumen are presented. Bituminous binder was modified with mix modification using polymer and additive of crumb rubber. Terminal blend process at the refinery was applied to produce the mixed modified binder. Laboratory tests were focused on the characterization of the properties of 45/80-55 CR binder with comparison to reference 50/70 and conventional polymer modified 45/80-55 bitumen. Based on conventional binder tests such as penetration, softening point and Fraass breaking point as well as BBR (bending beam rheometer) and DSR (dynamic shear rheometer) tests, rheological properties were investigated. For determination of stability of the polymer and crumb rubber, modified bitumen tube testing method was used. Based on the results analysis, improvement of the viscoelastic properties of polymer and crumb rubber modified bitumen was observed. Conventional properties and stability tests showed that it is possible to pass standard requirements for polymer modified bitumen. Mixed modification and terminal blend allow to use crumb rubber as a modifier with elimination of the separation of crumb rubber during transportation and storage at high temperature. In this paper, experience from filed sections with use of the asphalt mixture with new kind of modified bitumen is presented.
基金The project is supported by the EPSRC and the Youth Science Foundation of Shanghai Higher Education.
文摘An epoxy-terminated hyperbranched aromatic polyester (P3) was synthesized from a hyperbranched aromatic polyester containing carboxylic acid end groups (P1), which was derived from the condensation polymerization of the AB(2) monomer, 5-acetoxyisophthalic acid. Polymer P1 was converted into the polymeric acid chloride by reaction with thionyl chloride. The acid chloride was reacted with ethanol and glycidol to form a poly(ethyl ester) (P2) and an epoxy terminated material (P3), respectively. The reaction conditions in each step of these processes had to be controlled very carefully to avoid unwanted cross-linking reactions. The characterization of products and intermediates, including molecular weight distributions and thermal properties, are reported.