We study the distribution limit of a class of stochastic evolution equation driven by an additive-stable Non-Gaussian process in the case of α∈(1,2).We prove that,under suitable conditions,the law of the solution co...We study the distribution limit of a class of stochastic evolution equation driven by an additive-stable Non-Gaussian process in the case of α∈(1,2).We prove that,under suitable conditions,the law of the solution converges weakly to the law of a stochastic evolution equation with an additive Gaussian process.展开更多
The challenge of aerodynamic noise is a key obstacle in the advancement of low-pressure tube ultra-high-speed maglev transportation,demanding urgent resolution.This study utilizes a broadband noise source model to per...The challenge of aerodynamic noise is a key obstacle in the advancement of low-pressure tube ultra-high-speed maglev transportation,demanding urgent resolution.This study utilizes a broadband noise source model to perform a quantitative analysis of the aerodynamic noise produced by ultra-high-speed maglev trains operating in low-pressure environments.Initially,an external flow field calculation model for the ultra-high-speed maglev train is presented.Subsequently,numerical simulations based on the broadband noise source model are used to examine the noise characteristics.The impact of the train speed and pressure level on noise generation is investigated accordingly.Subsequently,a correlation formula is derived.The results reveal that the amplitude of sound source changes in the streamlined region of the head and tail cars of the train is large,and the amplitude of changes for the middle car is smaller.The noise source strength increases with speed,with a quadrupole noise source becoming dominant when the train speed exceeds 600 km/h.At a speed of 1000 km/h,the noise source intensity from the streamlined area at the rear of the train overcomes that at the front.Furthermore,the noise source decreases as the pressure level in the tube decreases.When the pressure level drops to 0.01 atm,the quadrupole noise source intensity of a train running at 600 km/h significantly weakens and falls below that of the dipole noise source.展开更多
Stochastic resonance system is an effective method to extract weak signal.However,system output is directly influenced by system parameters.Aiming at this,the Levy noise is combined with a tri-stable stochastic resona...Stochastic resonance system is an effective method to extract weak signal.However,system output is directly influenced by system parameters.Aiming at this,the Levy noise is combined with a tri-stable stochastic resonance system.The average signal-to-noise ratio gain is regarded as an index to measure the stochastic resonance phenomenon.The characteristics of tri-stable stochastic resonance under Levy noise is analyzed in depth.First,the method of generating Levy noise,the effect of tri-stable system parameters on the potential function and corresponding potential force are presented in detail.Then,the effects of tri-stable system parameters w,a,b,and Levy noise intensity amplification factor D on the resonant output can be explored with different Levy noises.Finally,the tri-stable stochastic resonance system is applied to the bearing fault detection.Simulation results show that the stochastic resonance phenomenon can be induced by tuning the system parameters w,a,and b under different distributions of Levy noise,then the weak signal can be detected.The parameter intervals which can induce stochastic resonances are approximately equal.Moreover,by adjusting the intensity amplification factor D of Levy noise,the stochastic resonances can happen similarly.In bearing fault detection,the detection effect of the tri-stable stochastic resonance system is superior to the bistable stochastic resonance system.展开更多
This paper presents a robust time delay estimation algorithm for the α-Stable noise based on correntropy. Many time delay estimation algorithms derived for impulsive stable noise are based on the theory of Fractional...This paper presents a robust time delay estimation algorithm for the α-Stable noise based on correntropy. Many time delay estimation algorithms derived for impulsive stable noise are based on the theory of Fractional Lower Order Statistics (FLOS). Unlike previously introduced FLOS-type algorithms, the new algorithm is proposed to estimate the time delay by maximizing the generalized correlation function of two observed signals needing neither prior information nor estimation of the numerical value of the stable noise's characteristic exponent. An interval for kernel selection is found for a wide range of characteristic exponent values of α-Stable distribution. Simulations show the proposed algorithm offers superior performance over the existing covariation time delay estimation, least mean p-norm time delay estimation and achieves slightly improved performance than fractional lower order covariance time delay estimation at lower signal to noise ratio when the noise is highly impulsive.展开更多
This paper deals with modulation classification under the alpha-stable noise condition. Our goal is to discriminate orthogonal frequency division multiplexing (OFDM) modulation type from single carrier linear digital ...This paper deals with modulation classification under the alpha-stable noise condition. Our goal is to discriminate orthogonal frequency division multiplexing (OFDM) modulation type from single carrier linear digital (SCLD) modulations in this scenario. Based on the new results concerning the generalized cyclostationarity of these signals in alpha-stable noise which are presented in this paper, we construct new modulation classification features without any priori information of carrier frequency and timing offset of the received signals, and use support vector machine (SVM) as classifier to discriminate OFDM from SCLD. Simulation results show that the recognition accuracy of the proposed algorithm can be up to 95% when the mix signal to noise ratio (MSNR) is up to ?1 dB.展开更多
Here the estimating problem of a single sinusoidal signal in the additive symmetricα-stable Gaussian(ASαSG)noise is investigated.The ASαSG noise here is expressed as the additive of a Gaussian noise and a symmetric...Here the estimating problem of a single sinusoidal signal in the additive symmetricα-stable Gaussian(ASαSG)noise is investigated.The ASαSG noise here is expressed as the additive of a Gaussian noise and a symmetricα-stable distributed variable.As the probability density function(PDF)of the ASαSG is complicated,traditional estimators cannot provide optimum estimates.Based on the Metropolis-Hastings(M-H)sampling scheme,a robust frequency estimator is proposed for ASαSG noise.Moreover,to accelerate the convergence rate of the developed algorithm,a new criterion of reconstructing the proposal covar-iance is derived,whose main idea is updating the proposal variance using several previous samples drawn in each iteration.The approximation PDF of the ASαSG noise,which is referred to the weighted sum of a Voigt function and a Gaussian PDF,is also employed to reduce the computational complexity.The computer simulations show that the performance of our method is better than the maximum likelihood and the lp-norm estimators.展开更多
This paper considers the stochastic resonance for a time-delayed mono-stable system, driven by correlated multiplicative and additive white noise. It finds that the output signal-to-noise ratio (SNR) varies non-mono...This paper considers the stochastic resonance for a time-delayed mono-stable system, driven by correlated multiplicative and additive white noise. It finds that the output signal-to-noise ratio (SNR) varies non-monotonically with the delayed times. The SNR varies non-monotonically with the increase of the intensities of the multiplicative and additive noise, with the increase of the correlation strength between the two noises, as well as with the system parameter.展开更多
Massive data from observations,experiments and simulations of dynamical models in scientific and engineering fields make it desirable for data-driven methods to extract basic laws of these models.We present a novel me...Massive data from observations,experiments and simulations of dynamical models in scientific and engineering fields make it desirable for data-driven methods to extract basic laws of these models.We present a novel method to identify such high dimensional stochastic dynamical systems that are perturbed by a non-Gaussianα-stable Lévy noise.More explicitly,firstly a machine learning framework to solve the sparse regression problem is established to grasp the drift terms through one of nonlocal Kramers–Moyal formulas.Then the jump measure and intensity of the noise are disposed by the relationship with statistical characteristics of the process.Three examples are then given to demonstrate the feasibility.This approach proposes an effective way to understand the complex phenomena of systems under non-Gaussian fluctuations and illuminates some insights into the exploration for further typical dynamical indicators such as the maximum likelihood transition path or mean exit time of these stochastic systems.展开更多
Reducing the aerodynamic drag and noise levels of high-speed pantographs is important for promoting environmentally friendly,energy efficient and rapid advances in train technology.Using computational fluid dynamics t...Reducing the aerodynamic drag and noise levels of high-speed pantographs is important for promoting environmentally friendly,energy efficient and rapid advances in train technology.Using computational fluid dynamics theory and the K-FWH acoustic equation,a numerical simulation is conducted to investigate the aerodynamic characteristics of high-speed pantographs.A component optimization method is proposed as a possible solution to the problemof aerodynamic drag and noise in high-speed pantographs.The results of the study indicate that the panhead,base and insulator are the main contributors to aerodynamic drag and noise in high-speed pantographs.Therefore,a gradual optimization process is implemented to improve the most significant components that cause aerodynamic drag and noise.By optimizing the cross-sectional shape of the strips and insulators,the drag and noise caused by airflow separation and vortex shedding can be reduced.The aerodynamic drag of insulator with circular cross section and strips with rectangular cross section is the largest.Ellipsifying insulators and optimizing the chamfer angle and height of the windward surface of the strips can improve the aerodynamic performance of the pantograph.In addition,the streamlined fairing attached to the base can eliminate the complex flow and shield the radiated noise.In contrast to the original pantograph design,the improved pantograph shows a 21.1%reduction in aerodynamic drag and a 1.65 dBA reduction in aerodynamic noise.展开更多
Orthogonal frequency division multiplexing passive optical network(OFDM-PON) has superior anti-dispersion property to operate in the C-band of fiber for increased optical power budget. However,the downlink broadcast e...Orthogonal frequency division multiplexing passive optical network(OFDM-PON) has superior anti-dispersion property to operate in the C-band of fiber for increased optical power budget. However,the downlink broadcast exposes the physical layer vulnerable to the threat of illegal eavesdropping. Quantum noise stream cipher(QNSC) is a classic physical layer encryption method and well compatible with the OFDM-PON. Meanwhile, it is indispensable to exploit forward error correction(FEC) to control errors in data transmission. However, when QNSC and FEC are jointly coded, the redundant information becomes heavier and thus the code rate of the transmitted signal will be largely reduced. In this work, we propose a physical layer encryption scheme based on polar-code-assisted QNSC. In order to improve the code rate and security of the transmitted signal, we exploit chaotic sequences to yield the redundant bits and utilize the redundant information of the polar code to generate the higher-order encrypted signal in the QNSC scheme with the operation of the interleaver.We experimentally demonstrate the encrypted 16/64-QAM, 16/256-QAM, 16/1024-QAM, 16/4096-QAM QNSC signals transmitted over 30-km standard single mode fiber. For the transmitted 16/4096-QAM QNSC signal, compared with the conventional QNSC method, the proposed method increases the code rate from 0.1 to 0.32 with enhanced security.展开更多
In the past few years,attention has mainly been focused on the symmetric Brownian motor(BM)with Gaussian noises,whose current and energy conversion efficiency are very low.Here,we investigate the operating performance...In the past few years,attention has mainly been focused on the symmetric Brownian motor(BM)with Gaussian noises,whose current and energy conversion efficiency are very low.Here,we investigate the operating performance of the symmetric BM subjected to Lévy noise.Through numerical simulations,it is found that the operating performance of the motor can be greatly improved in asymmetric Lévy noise.Without any load,the Lévy noises with smaller stable indexes can let the motor give rise to a much greater current.With a load,the energy conversion efficiency of the motor can be enhanced by adjusting the stable indexes of the Lévy noises with symmetry breaking.The results of this research are of great significance for opening up BM’s intrinsic physical mechanism and promoting the development of nanotechnology.展开更多
The issue of low-frequency structural noise radiated from high-speed railway(HSR) box-girder bridges(BGBs) is a significant challenge worldwide. Although it is known that vibrations in BGBs caused by moving trains can...The issue of low-frequency structural noise radiated from high-speed railway(HSR) box-girder bridges(BGBs) is a significant challenge worldwide. Although it is known that vibrations in BGBs caused by moving trains can be reduced by installing multiple tuned mass dampers(MTMDs) on the top plate, there is limited research on the noise reduction achieved by this method. This study aims to investigate the noise reduction mechanism of BGBs installed with MTMDs on the top plate. A sound radiation prediction model for the BGB installed with MTMDs is developed, based on the vehicle–track–bridge coupled dynamics and acoustics boundary element method. After being verified by field tested results, the prediction model is employed to study the reduction of vibration and noise of BGBs caused by the MTMDs. It is found that installing MTMDs on top plate can significantly affect the vibration distribution and sound radiation law of BGBs. However, its impact on the sound radiation caused by vibrations dominated by the global modes of BGBs is minimal. The noise reduction achieved by MTMDs is mainly through changing the acoustic radiation contributions of each plate of the bridge. In the lower frequency range, the noise reduction of BGB caused by MTMDs can be more effective if the installation of MTMDs can modify the vibration frequency and distribution of the BGB to avoid the influence of small vibrations and disperse the sound radiation from each plate.展开更多
Many traditional denoising methods,such as Gaussian filtering,tend to blur and lose details or edge information while reducing noise.The stationary wavelet packet transform is a multi-scale and multi-band analysis too...Many traditional denoising methods,such as Gaussian filtering,tend to blur and lose details or edge information while reducing noise.The stationary wavelet packet transform is a multi-scale and multi-band analysis tool.Compared with the stationary wavelet transform,it can suppress high-frequency noise while preserving more edge details.Deep learning has significantly progressed in denoising applications.DnCNN,a residual network;FFDNet,an efficient,fl exible network;U-NET,a codec network;and GAN,a generative adversative network,have better denoising effects than BM3D,the most popular conventional denoising method.Therefore,SWP_hFFDNet,a random noise attenuation network based on the stationary wavelet packet transform(SWPT)and modified FFDNet,is proposed.This network combines the advantages of SWPT,Huber norm,and FFDNet.In addition,it has three characteristics:First,SWPT is an eff ective featureextraction tool that can obtain low-and high-frequency features of different scales and frequency bands.Second,because the noise level map is the input of the network,the noise removal performance of diff erent noise levels can be improved.Third,the Huber norm can reduce the sensitivity of the network to abnormal data and enhance its robustness.The network is trained using the Adam algorithm and the BSD500 dataset,which is augmented,noised,and decomposed by SWPT.Experimental and actual data processing results show that the denoising eff ect of the proposed method is almost the same as those of BM3D,DnCNN,and FFDNet networks for low noise.However,for high noise,the proposed method is superior to the aforementioned networks.展开更多
Noise is one of the environmental factors with mental and physical effects.The workload is also the multiple mental and physical demands of the task.Therefore,his study investigated the relationship between noise expo...Noise is one of the environmental factors with mental and physical effects.The workload is also the multiple mental and physical demands of the task.Therefore,his study investigated the relationship between noise exposure and mood states at different levels of workload.The study recruited 50 workers from the manufacturing sector(blue-collar workers)as the exposed group and 50 workers from the office sector(white-collar workers)as the control group.Their occupational noise exposure was measured by dosimetry.The Stress-Arousal Checklist(SACL)and the NASA Task Load Index(NASA-TLX)were used to measure mood and workload,respectively.The equivalent noise exposure level of the exposed group at high and very high workload levels was 85 and 87 dBA,respectively.The mean mood score of the exposed group was 76 at very high workload.The correlation coefficient between noise exposure level and mood state based on workload levels ranged from 0.3 at medium workload to 0.57 at very high workload.Noise exposure at high workload levels can increase its adverse effects,so controlling and optimizing the multiple demands of the task in the workplace can be used as a privative measure to reduce the adverse effects of noise.展开更多
Global energy and environmental issues are becoming increasingly problematic,and the vibration and noise problem of 110 kV transformers,which are the most widely distributed,have attracted widespread attention from bo...Global energy and environmental issues are becoming increasingly problematic,and the vibration and noise problem of 110 kV transformers,which are the most widely distributed,have attracted widespread attention from both inside and outside the industry.DC bias is one of the main contributing factors to vibration noise during the normal operation of transformers.To clarify the vibration and noise mechanism of a 110 kV transformer under a DC bias,a multi-field coupling model of a 110 kV transformer was established using the finite element method.The electromagnetic,vibration,and noise characteristics during the DC bias process were compared and quantified through field circuit coupling in parallel with the power frequency of AC,harmonic,and DC power sources.It was found that a DC bias can cause significant distortions in the magnetic flux density,force,and displacement distributions of the core and winding.The contributions of the DC bias effect to the core and winding are different at Kdc=0.85.At this point,the core approached saturation,and the increase in the core force and displacement slowed.However,the saturation of the core increased the leakage flux,and the stress and displacement of the winding increased faster.The sound field distribution characteristics of the 110 kV transformer under a DC bias are related to the force characteristics.When the DC bias coefficient was 1.25,the noise sound pressure level reached 73.6 dB.展开更多
Weak signal reception is a very important and challenging problem for communication systems especially in the presence of non-Gaussian noise,and in which case the performance of optimal linear correlated receiver degr...Weak signal reception is a very important and challenging problem for communication systems especially in the presence of non-Gaussian noise,and in which case the performance of optimal linear correlated receiver degrades dramatically.Aiming at this,a novel uncorrelated reception scheme based on adaptive bistable stochastic resonance(ABSR)for a weak signal in additive Laplacian noise is investigated.By analyzing the key issue that the quantitative cooperative resonance matching relationship between the characteristics of the noisy signal and the nonlinear bistable system,an analytical expression of the bistable system parameters is derived.On this basis,by means of bistable system parameters self-adaptive adjustment,the counterintuitive stochastic resonance(SR)phenomenon can be easily generated at which the random noise is changed into a benefit to assist signal transmission.Finally,it is demonstrated that approximately 8dB bit error ratio(BER)performance improvement for the ABSR-based uncorrelated receiver when compared with the traditional uncorrelated receiver at low signal to noise ratio(SNR)conditions varying from-30dB to-5dB.展开更多
As a crucial component of terrestrial ecosystems,urban forests play a pivotal role in protecting urban biodiversity by providing suitable habitats for acoustic spaces.Previous studies note that vegetation structure is...As a crucial component of terrestrial ecosystems,urban forests play a pivotal role in protecting urban biodiversity by providing suitable habitats for acoustic spaces.Previous studies note that vegetation structure is a key factor influencing bird sounds in urban forests;hence,adjusting the frequency composition may be a strategy for birds to avoid anthropogenic noise to mask their songs.However,it is unknown whether the response mechanisms of bird vocalizations to vegetation structure remain consistent despite being impacted by anthropogenic noise.It was hypothesized that anthropogenic noise in urban forests occupies the low-frequency space of bird songs,leading to a possible reshaping of the acoustic niches of forests,and the vegetation structure of urban forests is the critical factor that shapes the acoustic space for bird vocalization.Passive acoustic monitoring in various urban forests was used to monitor natural and anthropogenic noises,and sounds were classified into three acoustic scenes(bird sounds,human sounds,and bird-human sounds)to determine interconnections between bird sounds,anthropogenic noise,and vegetation structure.Anthropogenic noise altered the acoustic niche of urban forests by intruding into the low-frequency space used by birds,and vegetation structures related to volume(trunk volume and branch volume)and density(number of branches and leaf area index)significantly impact the diversity of bird sounds.Our findings indicate that the response to low and high frequency signals to vegetation structure is distinct.By clarifying this relationship,our results contribute to understanding of how vegetation structure influences bird sounds in urban forests impacted by anthropogenic noise.展开更多
Social networks are inevitably subject to disruptions from the physical world,such as sudden internet outages that sever local connections and impede information flow.While Gaussian white noise,commonly used to simula...Social networks are inevitably subject to disruptions from the physical world,such as sudden internet outages that sever local connections and impede information flow.While Gaussian white noise,commonly used to simulate stochastic disruptions,only fluctuates within a narrow range around its mean and fails to capture large-scale variations,L´evy noise can effectively compensate for this limitation.Therefore,a susceptible–infected–removed rumor propagation model with L´evy noise is constructed on homogeneous and heterogeneous networks,respectively.Then,the existence of a global positive solution and the asymptotic path-wise of the solution are derived on heterogeneous networks,and the sufficient conditions of rumor extinction and persistence are investigated.Subsequently,theoretical results are verified through numerical calculations and the sensitivity analysis related to the threshold is conducted on the model parameters.Through simulation experiments on Watts–Strogatz(WS)and Barab´asi–Albert networks,it is found that the addition of noise can inhibit the spread of rumors,resulting in a stochastic resonance phenomenon,and the optimal noise intensity is obtained on the WS network.The validity of the model is verified on three real datasets by particle swarm optimization algorithm.展开更多
This letter proposes a sliced-gated-convolutional neural network with belief propagation(SGCNN-BP) architecture for decoding long codes under correlated noise. The basic idea of SGCNNBP is using Neural Networks(NN) to...This letter proposes a sliced-gated-convolutional neural network with belief propagation(SGCNN-BP) architecture for decoding long codes under correlated noise. The basic idea of SGCNNBP is using Neural Networks(NN) to transform the correlated noise into white noise, setting up the optimal condition for a standard BP decoder that takes the output from the NN. A gate-controlled neuron is used to regulate information flow and an optional operation—slicing is adopted to reduce parameters and lower training complexity. Simulation results show that SGCNN-BP has much better performance(with the largest gap being 5dB improvement) than a single BP decoder and achieves a nearly 1dB improvement compared to Fully Convolutional Networks(FCN).展开更多
Research on discrete memristor-based neural networks has received much attention.However,current research mainly focuses on memristor–based discrete homogeneous neuron networks,while memristor-coupled discrete hetero...Research on discrete memristor-based neural networks has received much attention.However,current research mainly focuses on memristor–based discrete homogeneous neuron networks,while memristor-coupled discrete heterogeneous neuron networks are rarely reported.In this study,a new four-stable discrete locally active memristor is proposed and its nonvolatile and locally active properties are verified by its power-off plot and DC V–I diagram.Based on two-dimensional(2D)discrete Izhikevich neuron and 2D discrete Chialvo neuron,a heterogeneous discrete neuron network is constructed by using the proposed discrete memristor as a coupling synapse connecting the two heterogeneous neurons.Considering the coupling strength as the control parameter,chaotic firing,periodic firing,and hyperchaotic firing patterns are revealed.In particular,multiple coexisting firing patterns are observed,which are induced by different initial values of the memristor.Phase synchronization between the two heterogeneous neurons is discussed and it is found that they can achieve perfect synchronous at large coupling strength.Furthermore,the effect of Gaussian white noise on synchronization behaviors is also explored.We demonstrate that the presence of noise not only leads to the transition of firing patterns,but also achieves the phase synchronization between two heterogeneous neurons under low coupling strength.展开更多
基金Supported by the Science and Technology Research Projects of Hubei Provincial Department of Education(B2022077)。
文摘We study the distribution limit of a class of stochastic evolution equation driven by an additive-stable Non-Gaussian process in the case of α∈(1,2).We prove that,under suitable conditions,the law of the solution converges weakly to the law of a stochastic evolution equation with an additive Gaussian process.
基金funded by the Talent Program(Ph.D.Fund)of Chengdu Technological University(grant number 2024RC025)the Natural Science Foundation of Sichuan Province(grant number 2022NSFSC1892)Fundamental Research Funds for the Central Universities(grant number XJ2021KJZK054).
文摘The challenge of aerodynamic noise is a key obstacle in the advancement of low-pressure tube ultra-high-speed maglev transportation,demanding urgent resolution.This study utilizes a broadband noise source model to perform a quantitative analysis of the aerodynamic noise produced by ultra-high-speed maglev trains operating in low-pressure environments.Initially,an external flow field calculation model for the ultra-high-speed maglev train is presented.Subsequently,numerical simulations based on the broadband noise source model are used to examine the noise characteristics.The impact of the train speed and pressure level on noise generation is investigated accordingly.Subsequently,a correlation formula is derived.The results reveal that the amplitude of sound source changes in the streamlined region of the head and tail cars of the train is large,and the amplitude of changes for the middle car is smaller.The noise source strength increases with speed,with a quadrupole noise source becoming dominant when the train speed exceeds 600 km/h.At a speed of 1000 km/h,the noise source intensity from the streamlined area at the rear of the train overcomes that at the front.Furthermore,the noise source decreases as the pressure level in the tube decreases.When the pressure level drops to 0.01 atm,the quadrupole noise source intensity of a train running at 600 km/h significantly weakens and falls below that of the dipole noise source.
基金Project supported by the National Natural Science Foundation of China(Grant No.61371164)the Chongqing Municipal Distinguished Youth Foundation,China(Grant No.CSTC2011jjjq40002)the Research Project of Chongqing Municipal Educational Commission,China(Grant No.KJ130524)
文摘Stochastic resonance system is an effective method to extract weak signal.However,system output is directly influenced by system parameters.Aiming at this,the Levy noise is combined with a tri-stable stochastic resonance system.The average signal-to-noise ratio gain is regarded as an index to measure the stochastic resonance phenomenon.The characteristics of tri-stable stochastic resonance under Levy noise is analyzed in depth.First,the method of generating Levy noise,the effect of tri-stable system parameters on the potential function and corresponding potential force are presented in detail.Then,the effects of tri-stable system parameters w,a,b,and Levy noise intensity amplification factor D on the resonant output can be explored with different Levy noises.Finally,the tri-stable stochastic resonance system is applied to the bearing fault detection.Simulation results show that the stochastic resonance phenomenon can be induced by tuning the system parameters w,a,and b under different distributions of Levy noise,then the weak signal can be detected.The parameter intervals which can induce stochastic resonances are approximately equal.Moreover,by adjusting the intensity amplification factor D of Levy noise,the stochastic resonances can happen similarly.In bearing fault detection,the detection effect of the tri-stable stochastic resonance system is superior to the bistable stochastic resonance system.
基金Supported by the Chinese National Science Foundation(No.60872122)
文摘This paper presents a robust time delay estimation algorithm for the α-Stable noise based on correntropy. Many time delay estimation algorithms derived for impulsive stable noise are based on the theory of Fractional Lower Order Statistics (FLOS). Unlike previously introduced FLOS-type algorithms, the new algorithm is proposed to estimate the time delay by maximizing the generalized correlation function of two observed signals needing neither prior information nor estimation of the numerical value of the stable noise's characteristic exponent. An interval for kernel selection is found for a wide range of characteristic exponent values of α-Stable distribution. Simulations show the proposed algorithm offers superior performance over the existing covariation time delay estimation, least mean p-norm time delay estimation and achieves slightly improved performance than fractional lower order covariance time delay estimation at lower signal to noise ratio when the noise is highly impulsive.
文摘This paper deals with modulation classification under the alpha-stable noise condition. Our goal is to discriminate orthogonal frequency division multiplexing (OFDM) modulation type from single carrier linear digital (SCLD) modulations in this scenario. Based on the new results concerning the generalized cyclostationarity of these signals in alpha-stable noise which are presented in this paper, we construct new modulation classification features without any priori information of carrier frequency and timing offset of the received signals, and use support vector machine (SVM) as classifier to discriminate OFDM from SCLD. Simulation results show that the recognition accuracy of the proposed algorithm can be up to 95% when the mix signal to noise ratio (MSNR) is up to ?1 dB.
基金supported by National Key R&D Program of China(Grant No.2018YFF01012600)National Natural Science Foundation of China(Grant No.61701021)Fundamental Research Funds for the Central Universities(Grant No.FRF-TP-19-006A3).
文摘Here the estimating problem of a single sinusoidal signal in the additive symmetricα-stable Gaussian(ASαSG)noise is investigated.The ASαSG noise here is expressed as the additive of a Gaussian noise and a symmetricα-stable distributed variable.As the probability density function(PDF)of the ASαSG is complicated,traditional estimators cannot provide optimum estimates.Based on the Metropolis-Hastings(M-H)sampling scheme,a robust frequency estimator is proposed for ASαSG noise.Moreover,to accelerate the convergence rate of the developed algorithm,a new criterion of reconstructing the proposal covar-iance is derived,whose main idea is updating the proposal variance using several previous samples drawn in each iteration.The approximation PDF of the ASαSG noise,which is referred to the weighted sum of a Voigt function and a Gaussian PDF,is also employed to reduce the computational complexity.The computer simulations show that the performance of our method is better than the maximum likelihood and the lp-norm estimators.
文摘This paper considers the stochastic resonance for a time-delayed mono-stable system, driven by correlated multiplicative and additive white noise. It finds that the output signal-to-noise ratio (SNR) varies non-monotonically with the delayed times. The SNR varies non-monotonically with the increase of the intensities of the multiplicative and additive noise, with the increase of the correlation strength between the two noises, as well as with the system parameter.
基金the National Natural Science Foundation of China(Grant No.12172167)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)。
文摘Massive data from observations,experiments and simulations of dynamical models in scientific and engineering fields make it desirable for data-driven methods to extract basic laws of these models.We present a novel method to identify such high dimensional stochastic dynamical systems that are perturbed by a non-Gaussianα-stable Lévy noise.More explicitly,firstly a machine learning framework to solve the sparse regression problem is established to grasp the drift terms through one of nonlocal Kramers–Moyal formulas.Then the jump measure and intensity of the noise are disposed by the relationship with statistical characteristics of the process.Three examples are then given to demonstrate the feasibility.This approach proposes an effective way to understand the complex phenomena of systems under non-Gaussian fluctuations and illuminates some insights into the exploration for further typical dynamical indicators such as the maximum likelihood transition path or mean exit time of these stochastic systems.
基金supported by National Natural Science Foundation of China(12372049)Science and Technology Program of China National Accreditation Service for Confor-mity Assessment(2022CNAS15)+1 种基金Sichuan Science and Technology Program(2023JDRC0062)Independent Project of State Key Laboratory of Rail Transit Vehicle System(2023TPL-T06).
文摘Reducing the aerodynamic drag and noise levels of high-speed pantographs is important for promoting environmentally friendly,energy efficient and rapid advances in train technology.Using computational fluid dynamics theory and the K-FWH acoustic equation,a numerical simulation is conducted to investigate the aerodynamic characteristics of high-speed pantographs.A component optimization method is proposed as a possible solution to the problemof aerodynamic drag and noise in high-speed pantographs.The results of the study indicate that the panhead,base and insulator are the main contributors to aerodynamic drag and noise in high-speed pantographs.Therefore,a gradual optimization process is implemented to improve the most significant components that cause aerodynamic drag and noise.By optimizing the cross-sectional shape of the strips and insulators,the drag and noise caused by airflow separation and vortex shedding can be reduced.The aerodynamic drag of insulator with circular cross section and strips with rectangular cross section is the largest.Ellipsifying insulators and optimizing the chamfer angle and height of the windward surface of the strips can improve the aerodynamic performance of the pantograph.In addition,the streamlined fairing attached to the base can eliminate the complex flow and shield the radiated noise.In contrast to the original pantograph design,the improved pantograph shows a 21.1%reduction in aerodynamic drag and a 1.65 dBA reduction in aerodynamic noise.
基金supported in part by the National Natural Science Foundation of China Project under Grant 62075147the Suzhou Industry Technological Innovation Projects under Grant SYG202348.
文摘Orthogonal frequency division multiplexing passive optical network(OFDM-PON) has superior anti-dispersion property to operate in the C-band of fiber for increased optical power budget. However,the downlink broadcast exposes the physical layer vulnerable to the threat of illegal eavesdropping. Quantum noise stream cipher(QNSC) is a classic physical layer encryption method and well compatible with the OFDM-PON. Meanwhile, it is indispensable to exploit forward error correction(FEC) to control errors in data transmission. However, when QNSC and FEC are jointly coded, the redundant information becomes heavier and thus the code rate of the transmitted signal will be largely reduced. In this work, we propose a physical layer encryption scheme based on polar-code-assisted QNSC. In order to improve the code rate and security of the transmitted signal, we exploit chaotic sequences to yield the redundant bits and utilize the redundant information of the polar code to generate the higher-order encrypted signal in the QNSC scheme with the operation of the interleaver.We experimentally demonstrate the encrypted 16/64-QAM, 16/256-QAM, 16/1024-QAM, 16/4096-QAM QNSC signals transmitted over 30-km standard single mode fiber. For the transmitted 16/4096-QAM QNSC signal, compared with the conventional QNSC method, the proposed method increases the code rate from 0.1 to 0.32 with enhanced security.
基金Project supported by the Research Group of Nonequilibrium Statistics(Grant No.14078206)Kunming University of Science and Technology,China.
文摘In the past few years,attention has mainly been focused on the symmetric Brownian motor(BM)with Gaussian noises,whose current and energy conversion efficiency are very low.Here,we investigate the operating performance of the symmetric BM subjected to Lévy noise.Through numerical simulations,it is found that the operating performance of the motor can be greatly improved in asymmetric Lévy noise.Without any load,the Lévy noises with smaller stable indexes can let the motor give rise to a much greater current.With a load,the energy conversion efficiency of the motor can be enhanced by adjusting the stable indexes of the Lévy noises with symmetry breaking.The results of this research are of great significance for opening up BM’s intrinsic physical mechanism and promoting the development of nanotechnology.
基金supported by the National Natural Science Foundation of China (NSFC) (Grant Nos. 52362049 and 52208446)the Natural Science Foundation of Gansu Province (Grant Nos. 22JR5RA344 and 22JR11RA152)+4 种基金the Special Funds for Guiding Local Scientifi c and Technological Development by the Central Government (Grant No. 22ZY1QA005)the Joint Innovation Fund Project of Lanzhou Jiaotong University and Corresponding Supporting University (Grant No. LH2023016)the Fundamental Research Funds for the Central Universities (2682023ZTZ010), the Lanzhou Science and Technology planning Project (Grant No. 2022-ZD-131)the key Research and Development Project of Lanzhou Jiaotong University (Grant No. LZJTU-ZDYF2302)the University Youth Fund Project of Lanzhou Jiaotong University (Grant No. 2021014)。
文摘The issue of low-frequency structural noise radiated from high-speed railway(HSR) box-girder bridges(BGBs) is a significant challenge worldwide. Although it is known that vibrations in BGBs caused by moving trains can be reduced by installing multiple tuned mass dampers(MTMDs) on the top plate, there is limited research on the noise reduction achieved by this method. This study aims to investigate the noise reduction mechanism of BGBs installed with MTMDs on the top plate. A sound radiation prediction model for the BGB installed with MTMDs is developed, based on the vehicle–track–bridge coupled dynamics and acoustics boundary element method. After being verified by field tested results, the prediction model is employed to study the reduction of vibration and noise of BGBs caused by the MTMDs. It is found that installing MTMDs on top plate can significantly affect the vibration distribution and sound radiation law of BGBs. However, its impact on the sound radiation caused by vibrations dominated by the global modes of BGBs is minimal. The noise reduction achieved by MTMDs is mainly through changing the acoustic radiation contributions of each plate of the bridge. In the lower frequency range, the noise reduction of BGB caused by MTMDs can be more effective if the installation of MTMDs can modify the vibration frequency and distribution of the BGB to avoid the influence of small vibrations and disperse the sound radiation from each plate.
文摘Many traditional denoising methods,such as Gaussian filtering,tend to blur and lose details or edge information while reducing noise.The stationary wavelet packet transform is a multi-scale and multi-band analysis tool.Compared with the stationary wavelet transform,it can suppress high-frequency noise while preserving more edge details.Deep learning has significantly progressed in denoising applications.DnCNN,a residual network;FFDNet,an efficient,fl exible network;U-NET,a codec network;and GAN,a generative adversative network,have better denoising effects than BM3D,the most popular conventional denoising method.Therefore,SWP_hFFDNet,a random noise attenuation network based on the stationary wavelet packet transform(SWPT)and modified FFDNet,is proposed.This network combines the advantages of SWPT,Huber norm,and FFDNet.In addition,it has three characteristics:First,SWPT is an eff ective featureextraction tool that can obtain low-and high-frequency features of different scales and frequency bands.Second,because the noise level map is the input of the network,the noise removal performance of diff erent noise levels can be improved.Third,the Huber norm can reduce the sensitivity of the network to abnormal data and enhance its robustness.The network is trained using the Adam algorithm and the BSD500 dataset,which is augmented,noised,and decomposed by SWPT.Experimental and actual data processing results show that the denoising eff ect of the proposed method is almost the same as those of BM3D,DnCNN,and FFDNet networks for low noise.However,for high noise,the proposed method is superior to the aforementioned networks.
文摘Noise is one of the environmental factors with mental and physical effects.The workload is also the multiple mental and physical demands of the task.Therefore,his study investigated the relationship between noise exposure and mood states at different levels of workload.The study recruited 50 workers from the manufacturing sector(blue-collar workers)as the exposed group and 50 workers from the office sector(white-collar workers)as the control group.Their occupational noise exposure was measured by dosimetry.The Stress-Arousal Checklist(SACL)and the NASA Task Load Index(NASA-TLX)were used to measure mood and workload,respectively.The equivalent noise exposure level of the exposed group at high and very high workload levels was 85 and 87 dBA,respectively.The mean mood score of the exposed group was 76 at very high workload.The correlation coefficient between noise exposure level and mood state based on workload levels ranged from 0.3 at medium workload to 0.57 at very high workload.Noise exposure at high workload levels can increase its adverse effects,so controlling and optimizing the multiple demands of the task in the workplace can be used as a privative measure to reduce the adverse effects of noise.
基金supported by the Key R&D Program of Shandong Province(2021CXGC010210).
文摘Global energy and environmental issues are becoming increasingly problematic,and the vibration and noise problem of 110 kV transformers,which are the most widely distributed,have attracted widespread attention from both inside and outside the industry.DC bias is one of the main contributing factors to vibration noise during the normal operation of transformers.To clarify the vibration and noise mechanism of a 110 kV transformer under a DC bias,a multi-field coupling model of a 110 kV transformer was established using the finite element method.The electromagnetic,vibration,and noise characteristics during the DC bias process were compared and quantified through field circuit coupling in parallel with the power frequency of AC,harmonic,and DC power sources.It was found that a DC bias can cause significant distortions in the magnetic flux density,force,and displacement distributions of the core and winding.The contributions of the DC bias effect to the core and winding are different at Kdc=0.85.At this point,the core approached saturation,and the increase in the core force and displacement slowed.However,the saturation of the core increased the leakage flux,and the stress and displacement of the winding increased faster.The sound field distribution characteristics of the 110 kV transformer under a DC bias are related to the force characteristics.When the DC bias coefficient was 1.25,the noise sound pressure level reached 73.6 dB.
基金supported in part by the National Natural Science Foundation of China(62001356)in part by the National Natural Science Foundation for Distinguished Young Scholar(61825104)+1 种基金in part by the National Key Research and Development Program of China(2022YFC3301300)in part by the Innovative Research Groups of the National Natural Science Foundation of China(62121001)。
文摘Weak signal reception is a very important and challenging problem for communication systems especially in the presence of non-Gaussian noise,and in which case the performance of optimal linear correlated receiver degrades dramatically.Aiming at this,a novel uncorrelated reception scheme based on adaptive bistable stochastic resonance(ABSR)for a weak signal in additive Laplacian noise is investigated.By analyzing the key issue that the quantitative cooperative resonance matching relationship between the characteristics of the noisy signal and the nonlinear bistable system,an analytical expression of the bistable system parameters is derived.On this basis,by means of bistable system parameters self-adaptive adjustment,the counterintuitive stochastic resonance(SR)phenomenon can be easily generated at which the random noise is changed into a benefit to assist signal transmission.Finally,it is demonstrated that approximately 8dB bit error ratio(BER)performance improvement for the ABSR-based uncorrelated receiver when compared with the traditional uncorrelated receiver at low signal to noise ratio(SNR)conditions varying from-30dB to-5dB.
基金the National Natural Science Foundation of China(32201338)Science Technology Program from the Forestry Administration of Guangdong Province(2021KJCX017)+1 种基金Guangzhou Municipal Science and Technology Bureau Program(2023A04J0086)Shenzhen Key Laboratory of Southern Subtropical Plant Diversity。
文摘As a crucial component of terrestrial ecosystems,urban forests play a pivotal role in protecting urban biodiversity by providing suitable habitats for acoustic spaces.Previous studies note that vegetation structure is a key factor influencing bird sounds in urban forests;hence,adjusting the frequency composition may be a strategy for birds to avoid anthropogenic noise to mask their songs.However,it is unknown whether the response mechanisms of bird vocalizations to vegetation structure remain consistent despite being impacted by anthropogenic noise.It was hypothesized that anthropogenic noise in urban forests occupies the low-frequency space of bird songs,leading to a possible reshaping of the acoustic niches of forests,and the vegetation structure of urban forests is the critical factor that shapes the acoustic space for bird vocalization.Passive acoustic monitoring in various urban forests was used to monitor natural and anthropogenic noises,and sounds were classified into three acoustic scenes(bird sounds,human sounds,and bird-human sounds)to determine interconnections between bird sounds,anthropogenic noise,and vegetation structure.Anthropogenic noise altered the acoustic niche of urban forests by intruding into the low-frequency space used by birds,and vegetation structures related to volume(trunk volume and branch volume)and density(number of branches and leaf area index)significantly impact the diversity of bird sounds.Our findings indicate that the response to low and high frequency signals to vegetation structure is distinct.By clarifying this relationship,our results contribute to understanding of how vegetation structure influences bird sounds in urban forests impacted by anthropogenic noise.
基金the National Nat-ural Science Foundation of China(Grant Nos.62071248 and 62201284)the Graduate Scientific Re-search and Innovation Program of Jiangsu Province(Grant No.KYCX241119).
文摘Social networks are inevitably subject to disruptions from the physical world,such as sudden internet outages that sever local connections and impede information flow.While Gaussian white noise,commonly used to simulate stochastic disruptions,only fluctuates within a narrow range around its mean and fails to capture large-scale variations,L´evy noise can effectively compensate for this limitation.Therefore,a susceptible–infected–removed rumor propagation model with L´evy noise is constructed on homogeneous and heterogeneous networks,respectively.Then,the existence of a global positive solution and the asymptotic path-wise of the solution are derived on heterogeneous networks,and the sufficient conditions of rumor extinction and persistence are investigated.Subsequently,theoretical results are verified through numerical calculations and the sensitivity analysis related to the threshold is conducted on the model parameters.Through simulation experiments on Watts–Strogatz(WS)and Barab´asi–Albert networks,it is found that the addition of noise can inhibit the spread of rumors,resulting in a stochastic resonance phenomenon,and the optimal noise intensity is obtained on the WS network.The validity of the model is verified on three real datasets by particle swarm optimization algorithm.
基金supported by Beijing Natural Science Foundation (L202003)。
文摘This letter proposes a sliced-gated-convolutional neural network with belief propagation(SGCNN-BP) architecture for decoding long codes under correlated noise. The basic idea of SGCNNBP is using Neural Networks(NN) to transform the correlated noise into white noise, setting up the optimal condition for a standard BP decoder that takes the output from the NN. A gate-controlled neuron is used to regulate information flow and an optional operation—slicing is adopted to reduce parameters and lower training complexity. Simulation results show that SGCNN-BP has much better performance(with the largest gap being 5dB improvement) than a single BP decoder and achieves a nearly 1dB improvement compared to Fully Convolutional Networks(FCN).
基金Project supported by the National Natural Science Foundations of China(Grant Nos.62171401 and 62071411).
文摘Research on discrete memristor-based neural networks has received much attention.However,current research mainly focuses on memristor–based discrete homogeneous neuron networks,while memristor-coupled discrete heterogeneous neuron networks are rarely reported.In this study,a new four-stable discrete locally active memristor is proposed and its nonvolatile and locally active properties are verified by its power-off plot and DC V–I diagram.Based on two-dimensional(2D)discrete Izhikevich neuron and 2D discrete Chialvo neuron,a heterogeneous discrete neuron network is constructed by using the proposed discrete memristor as a coupling synapse connecting the two heterogeneous neurons.Considering the coupling strength as the control parameter,chaotic firing,periodic firing,and hyperchaotic firing patterns are revealed.In particular,multiple coexisting firing patterns are observed,which are induced by different initial values of the memristor.Phase synchronization between the two heterogeneous neurons is discussed and it is found that they can achieve perfect synchronous at large coupling strength.Furthermore,the effect of Gaussian white noise on synchronization behaviors is also explored.We demonstrate that the presence of noise not only leads to the transition of firing patterns,but also achieves the phase synchronization between two heterogeneous neurons under low coupling strength.