Sb_(2)Se_(3) with unique one-dimensional(1D) crystal structure exhibits exceptional deformation tolerance,demonstrating great application potential in flexible devices.However,the power conversion efficiency(PCE) of f...Sb_(2)Se_(3) with unique one-dimensional(1D) crystal structure exhibits exceptional deformation tolerance,demonstrating great application potential in flexible devices.However,the power conversion efficiency(PCE) of flexible Sb_(2)Se_(3) photovoltaic devices is temporarily limited by the complicated intrinsic defects and the undesirable contact interfaces.Herein,a high-quality Sb_(2)Se_(3) absorber layer with large crystal grains and benign [hkl] growth orientation can be first prepared on a Mo foil substrate.Then NaF intermediate layer is introduced between Mo and Sb_(2)Se_(3),which can further optimize the growth of Sb_(2)Se_(3)thin film.Moreover,positive Na ion diffusion enables it to dramatically lower barrier height at the back contact interface and passivate harmful defects at both bulk and heterojunction.As a result,the champion substrate structured Mo-foil/Mo/NaF/Sb_(2)Se_(3)/CdS/ITO/Ag flexible thin-film solar cell delivers an obviously higher efficiency of 8.03% and a record open-circuit voltage(V_(OC)) of 0.492 V.This flexible Sb_(2)Se_(3) device also exhibits excellent stability and flexibility to stand large bending radius and multiple bending times,as well as superior weak light photo-response with derived efficiency of 12.60%.This work presents an effective strategy to enhance the flexible Sb_(2)Se_(3) device performance and expand its potential photovoltaic applications.展开更多
The structure–property relationship at interfaces is difficult to probe for thermoelectric materials with a complex interfacial microstructure.Designing thermoelectric materials with a simple,structurally-uniform int...The structure–property relationship at interfaces is difficult to probe for thermoelectric materials with a complex interfacial microstructure.Designing thermoelectric materials with a simple,structurally-uniform interface provides a facile way to understand how these interfaces influence the transport properties.Here,we synthesized Bi_(2−x)Sb_(x)Te_(3)(x=0,0.1,0.2,0.4)nanoflakes using a hydrothermal method,and prepared Bi_(2−x)Sb_(x)Te_(3) thin films with predominantly(0001)interfaces by stacking the nanoflakes through spin coating.The influence of the annealing temperature and Sb content on the(0001)interface structure was systematically investigated at atomic scale using aberration-corrected scanning transmission electron microscopy.Annealing and Sb doping facilitate atom diffusion and migration between adjacent nanoflakes along the(0001)interface.As such it enhances interfacial connectivity and improves the electrical transport properties.Interfac reactions create new interfaces that increase the scattering and the Seebeck coefficient.Due to the simultaneous optimization of electrical conductivity and Seebeck coefficient,the maximum power factor of the Bi_(1.8)Sb_(0.2)Te_(3) nanoflake films reaches 1.72 mW m^(−1)K^(−2),which is 43%higher than that of a pure Bi_(2)Te_(3) thin film.展开更多
The poor reversibility of Zn anodes induced by dendrite growth,surface passivation,and corrosion,severely hinders the practical applicability of Zn metal batteries.To address these issues,a plasmaassisted aerogel(PAG)...The poor reversibility of Zn anodes induced by dendrite growth,surface passivation,and corrosion,severely hinders the practical applicability of Zn metal batteries.To address these issues,a plasmaassisted aerogel(PAG)interface engineering was proposed as efficient ion transport modulator that can simultaneously regulate uniform Zn^(2+)flux and desolvation behavior during battery operation.The PAG with ordered mesopores acted as an ion sieve to homogenize Zn deposition and accelerate Zn^(2+)flux,which is favorable for corrosion resistance and dendrite suppression.Importantly,the plasma-assisted aerogel with abundant hydrophilic groups can facilitate the desolvation kinetics of Zn^(2+)due to the multiple hydrogen-bonding interaction with the activated water molecules,thus accelerating the Zn^(2+)migration kinetics.Consequently,the Zn/Zn cell assembled with PAG-modified separator demonstrates stable plating and stripping behavior(over 1400 h at 1 mA cm^(-2))and high Coulombic efficiency(99.8%at1 mA cm^(-2)after 1100 cycles),and the Zn‖MnO_(2)full cell shows excellent long-term cycling stability and maintains a high capacity of 154.9 mA h g^(-1)after 1000 cycles at 1 A g^(-1).This study provides a feasible approach for the large-scale fabrication of aerogel functionalized separators to realize ultra-stable Zn metal batteries.展开更多
Discovery of materials using“bottom-up”or“top-down”approach is of great interest in materials science.Layered materials consisting of two-dimensional(2D)building blocks provide a good platform to explore new mater...Discovery of materials using“bottom-up”or“top-down”approach is of great interest in materials science.Layered materials consisting of two-dimensional(2D)building blocks provide a good platform to explore new materials in this respect.In van der Waals(vdW)layered materials,these building blocks are charge neutral and can be isolated from their bulk phase(top-down),but usually grow on substrate.In ionic layered materials,they are charged and usually cannot exist independently but can serve as motifs to construct new materials(bottom-up).In this paper,we introduce our recently constructed databases for 2D material-substrate interface(2DMSI),and 2D charged building blocks.For 2DMSI database,we systematically build a workflow to predict appropriate substrates and their geometries at substrates,and construct the 2DMSI database.For the 2D charged building block database,1208 entries from bulk material database are identified.Information of crystal structure,valence state,source,dimension and so on is provided for each entry with a json format.We also show its application in designing and searching for new functional layered materials.The 2DMSI database,building block database,and designed layered materials are available in Science Data Bank at https://doi.org/10.57760/sciencedb.j00113.00188.展开更多
Rechargeable magnesium-ion(Mg-ion)batteries have attracted wide attention for energy storage.However,magnesium anode is still limited by the irreversible Mg plating/stripping procedure.Herein,a well-designed binary Bi...Rechargeable magnesium-ion(Mg-ion)batteries have attracted wide attention for energy storage.However,magnesium anode is still limited by the irreversible Mg plating/stripping procedure.Herein,a well-designed binary Bi_(2)O_(3)-Bi_(2)S_(3)(BO-BS)heterostructure is fulfilled by virtue of the cooperative interface and energy band engineering targeted fast Mg-ion storage.The built-in electronic field resulting from the asymmetrical electron distribution at the interface of electron-rich S center at Bi_(2)S_(3) side and electron-poor O center at Bi_(2)O_(3) side effectively accelerates the electrochemical reaction kinetics in the Mg-ion battery system.Moreover,the as-designed heterogenous interface also benefits to maintaining the electrode integrity.With these advantages,the BO-BS electrode displays a remarkable capacity of 150.36 mAh g^(−1) at 0.67 A g^(-1) and a superior cycling stability.This investigation would offer novel insights into the rational design of functional heterogenous electrode materials targeted the fast reaction kinetics for energy storage systems.展开更多
The electrochemical CO_(2)reduction reaction to produce multi-carbon(C_(2+)) hydrocarbons or oxygenate compounds is a promising route to obtain a renewable fuel of high energy density.However,producing C_(2+)at high c...The electrochemical CO_(2)reduction reaction to produce multi-carbon(C_(2+)) hydrocarbons or oxygenate compounds is a promising route to obtain a renewable fuel of high energy density.However,producing C_(2+)at high current densities is still a challenge.Herein,we develop a Cu-Zn alloy/Cu-Zn aluminate oxide composite electrocatalytic system for enhanced conversion of CO_(2)to C_(2+)products.The Cu-Zn-Al-Layered Double Hydroxide(LDH) is used as a precursor to decompose into uniform Cu-Zn oxide/Cu-Zn aluminate pre-catalyst.Under electrochemical reduction,Cu-Zn oxide generates Cu-Zn alloy while Cu-Zn aluminate oxide remains unchanged.The alloy and oxide are closely stacked and arranged alternately,and the aluminate oxide induces the strong electron interaction of Cu,Zn and Al,creating a large number of highly active reaction interfaces composed of 0 to+3 valence metal sites.With the help of the interface effect,the optimized Cu_(9)Zn_(1)/Cu_(0.8)Zn_(0.2)Al_(2)O_(4)catalyst achieves a Faradaic efficiency of 88.5% for C_(2+)products at a current density of 400 mA cm^(-2)at-1.15 V versus reversible hydrogen electrode.The in-situ Raman and attenuate total reflectance-infrared absorption spectroscopy(ATR-IRAS) spectra show that the aluminate oxide at the interface significantly enhances the adsorption and activation of CO_(2)and the dissociation of H2O and strengthens the adsorption of CO intermediates,and the alloy promotes the C-C coupling to produce C_(2+)products.This work provides an efficient strategy to construct highly active reaction interfaces for industrial-scale electrochemical CO_(2)RR.展开更多
Cu-based catalysts are widely employed for CO_(2) hydrogenation to methanol,which is expected as a promising process to achieving carbon neutrality.However,most Cu-based catalysts still suffer from low methanol yield ...Cu-based catalysts are widely employed for CO_(2) hydrogenation to methanol,which is expected as a promising process to achieving carbon neutrality.However,most Cu-based catalysts still suffer from low methanol yield with a passable CO_(2) conversion and lack insight into its reaction mechanism for guiding the design of catalysts.In this work,Cu^(+)/CeZrO_(x) interfaces are engineered by employing a series of ceria-zirconia solid solution catalysts with various Ce/Zr ratios,forming a Cu^(+)-O_(v)-Ce^(3+)structure where Cu^(+)atoms are bonded to the oxygen vacancies(O_(v))of ceria.Compared to Cu/CeO_(2) and Cu/ZrO_(2),the optimized catalyst(i.e.,Cu_(0.3)Ce_(0.3)Zr_(0.7))exhibits a much higher mass-specific methanol formation rate(192g_(MeOH)/kg_(cat)/h)at 240℃and 3 MPa.Through a series of in-situ and ex-situ characterization,it is revealed that oxygen vacancies in solid solutions can effectively assist the activation of CO_(2) and tune the electronic state of copper to promote the formation of Cu^(+)/CeZrO_(x) interfaces,which stabilizes the key*CO intermediate,inhibits its desorption and facilitates its further hydrogenation to methanol via the reverse watergas-shift(RWGS)+CO-Hydro pathway.Therefore,the concentration of*CO or the apparent Cu^(+)/(Cu^(+)+Cu^(0))ratio could be employed as a quantitative descriptor of the methanol formation rate.This work is expected to give a deep insight into the mechanism of metal/support interfaces in CO_(2) hydrogenation to methanol,offering an effective strategy to develop new catalysts with high performance.展开更多
Garnet-type Li_7La_(3)Zr_(2)O_(12)(LLZO) has high ionic conductivity and good compatibility with lithium metal.High-temperature processing has been proven an effective method to decrease the interface resistance of ca...Garnet-type Li_7La_(3)Zr_(2)O_(12)(LLZO) has high ionic conductivity and good compatibility with lithium metal.High-temperature processing has been proven an effective method to decrease the interface resistance of cathodeILLZO.However,its application is still hindered by the interlayer co-diffusion with the cathode and high sintering temperature(>1200℃).In this work,a new garnet-type composite solid-state electrolyte(SSE) Li_(6.54)La_(2.96)Ba_(0.04)Zr_(1.5)Nb_(0.5)O_(12)-LiCoO_(2)(LLBZNO-LCO) is firstly proposed to improve the chemical stability and electrochemical properties of garnet with high-temperature processing.Small doses of LCO(3%) can significantly decrease the LCOISSE interface resistance from 121.2 to 10.1 Ω cm~2,while the sintering temperature of garnet-type LLBZNO decreases from 1230 to 1000℃.The all-solid-state battery based on the sintered LLBZNO-LCO SSE exhibits excellent cycling stability.Our approach achieves an enhanced LCOISSE interface and an improved sintering activity of garnet SSE,which provides a new strategy for optimizing the comprehensive performance of garnet SSE.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.62104156,62074102)the Guangdong Basic and Applied Basic Research Foundation(Grant Nos.2023A1515011256,2022A1515010979)China+1 种基金Science and Technology plan project of Shenzhen(Grant Nos.20220808165025003,20200812000347001)Chinasupported by the open foundation of Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials,State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures,Guangxi University(Grant No.2022GXYSOF13)。
文摘Sb_(2)Se_(3) with unique one-dimensional(1D) crystal structure exhibits exceptional deformation tolerance,demonstrating great application potential in flexible devices.However,the power conversion efficiency(PCE) of flexible Sb_(2)Se_(3) photovoltaic devices is temporarily limited by the complicated intrinsic defects and the undesirable contact interfaces.Herein,a high-quality Sb_(2)Se_(3) absorber layer with large crystal grains and benign [hkl] growth orientation can be first prepared on a Mo foil substrate.Then NaF intermediate layer is introduced between Mo and Sb_(2)Se_(3),which can further optimize the growth of Sb_(2)Se_(3)thin film.Moreover,positive Na ion diffusion enables it to dramatically lower barrier height at the back contact interface and passivate harmful defects at both bulk and heterojunction.As a result,the champion substrate structured Mo-foil/Mo/NaF/Sb_(2)Se_(3)/CdS/ITO/Ag flexible thin-film solar cell delivers an obviously higher efficiency of 8.03% and a record open-circuit voltage(V_(OC)) of 0.492 V.This flexible Sb_(2)Se_(3) device also exhibits excellent stability and flexibility to stand large bending radius and multiple bending times,as well as superior weak light photo-response with derived efficiency of 12.60%.This work presents an effective strategy to enhance the flexible Sb_(2)Se_(3) device performance and expand its potential photovoltaic applications.
基金supported by the National Natural Science Foundation of China(52272235)supported by the Fundamental Research Funds for the Central Universities(WUT:2021III016GX).
文摘The structure–property relationship at interfaces is difficult to probe for thermoelectric materials with a complex interfacial microstructure.Designing thermoelectric materials with a simple,structurally-uniform interface provides a facile way to understand how these interfaces influence the transport properties.Here,we synthesized Bi_(2−x)Sb_(x)Te_(3)(x=0,0.1,0.2,0.4)nanoflakes using a hydrothermal method,and prepared Bi_(2−x)Sb_(x)Te_(3) thin films with predominantly(0001)interfaces by stacking the nanoflakes through spin coating.The influence of the annealing temperature and Sb content on the(0001)interface structure was systematically investigated at atomic scale using aberration-corrected scanning transmission electron microscopy.Annealing and Sb doping facilitate atom diffusion and migration between adjacent nanoflakes along the(0001)interface.As such it enhances interfacial connectivity and improves the electrical transport properties.Interfac reactions create new interfaces that increase the scattering and the Seebeck coefficient.Due to the simultaneous optimization of electrical conductivity and Seebeck coefficient,the maximum power factor of the Bi_(1.8)Sb_(0.2)Te_(3) nanoflake films reaches 1.72 mW m^(−1)K^(−2),which is 43%higher than that of a pure Bi_(2)Te_(3) thin film.
基金financially supported by the National Natural Science Foundation of China(NSFC)(52203261)Natural Science Foundation of Jiangsu Province(BK20210474)the project of research on the industrial application of"controllable synthesis of nanocarbon-based polymer composites and their application in new energy”(N0.CJGJZD20210408092400002).
文摘The poor reversibility of Zn anodes induced by dendrite growth,surface passivation,and corrosion,severely hinders the practical applicability of Zn metal batteries.To address these issues,a plasmaassisted aerogel(PAG)interface engineering was proposed as efficient ion transport modulator that can simultaneously regulate uniform Zn^(2+)flux and desolvation behavior during battery operation.The PAG with ordered mesopores acted as an ion sieve to homogenize Zn deposition and accelerate Zn^(2+)flux,which is favorable for corrosion resistance and dendrite suppression.Importantly,the plasma-assisted aerogel with abundant hydrophilic groups can facilitate the desolvation kinetics of Zn^(2+)due to the multiple hydrogen-bonding interaction with the activated water molecules,thus accelerating the Zn^(2+)migration kinetics.Consequently,the Zn/Zn cell assembled with PAG-modified separator demonstrates stable plating and stripping behavior(over 1400 h at 1 mA cm^(-2))and high Coulombic efficiency(99.8%at1 mA cm^(-2)after 1100 cycles),and the Zn‖MnO_(2)full cell shows excellent long-term cycling stability and maintains a high capacity of 154.9 mA h g^(-1)after 1000 cycles at 1 A g^(-1).This study provides a feasible approach for the large-scale fabrication of aerogel functionalized separators to realize ultra-stable Zn metal batteries.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61888102,52272172,and 52102193)the Major Program of the National Natural Science Foundation of China(Grant No.92163206)+2 种基金the National Key Research and Development Program of China(Grant Nos.2021YFA1201501 and 2022YFA1204100)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB30000000)the Fundamental Research Funds for the Central Universities.
文摘Discovery of materials using“bottom-up”or“top-down”approach is of great interest in materials science.Layered materials consisting of two-dimensional(2D)building blocks provide a good platform to explore new materials in this respect.In van der Waals(vdW)layered materials,these building blocks are charge neutral and can be isolated from their bulk phase(top-down),but usually grow on substrate.In ionic layered materials,they are charged and usually cannot exist independently but can serve as motifs to construct new materials(bottom-up).In this paper,we introduce our recently constructed databases for 2D material-substrate interface(2DMSI),and 2D charged building blocks.For 2DMSI database,we systematically build a workflow to predict appropriate substrates and their geometries at substrates,and construct the 2DMSI database.For the 2D charged building block database,1208 entries from bulk material database are identified.Information of crystal structure,valence state,source,dimension and so on is provided for each entry with a json format.We also show its application in designing and searching for new functional layered materials.The 2DMSI database,building block database,and designed layered materials are available in Science Data Bank at https://doi.org/10.57760/sciencedb.j00113.00188.
基金supported by the National Natural Science Foundation of China(52172239)Project of State Key Laboratory of Environment-Friendly Energy Materials(SWUST,Grant Nos.22fksy23 and 18ZD320304)+3 种基金the Frontier Project of Chengdu Tianfu New Area Institute(SWUST,Grand No.2022ZY017)Chongqing Talents:Exceptional Young Talents Project(Grant No.CQYC201905041)Natural Science Foundation of Chongqing China(Grant No.cstc2021jcyj-jqX0031)Interdiscipline Team Project under auspices of“Light of West”Program in Chinese Academy of Sciences(Grant No.xbzg-zdsys-202106).
文摘Rechargeable magnesium-ion(Mg-ion)batteries have attracted wide attention for energy storage.However,magnesium anode is still limited by the irreversible Mg plating/stripping procedure.Herein,a well-designed binary Bi_(2)O_(3)-Bi_(2)S_(3)(BO-BS)heterostructure is fulfilled by virtue of the cooperative interface and energy band engineering targeted fast Mg-ion storage.The built-in electronic field resulting from the asymmetrical electron distribution at the interface of electron-rich S center at Bi_(2)S_(3) side and electron-poor O center at Bi_(2)O_(3) side effectively accelerates the electrochemical reaction kinetics in the Mg-ion battery system.Moreover,the as-designed heterogenous interface also benefits to maintaining the electrode integrity.With these advantages,the BO-BS electrode displays a remarkable capacity of 150.36 mAh g^(−1) at 0.67 A g^(-1) and a superior cycling stability.This investigation would offer novel insights into the rational design of functional heterogenous electrode materials targeted the fast reaction kinetics for energy storage systems.
基金supported by the National Natural Science Foundation of China (NSFC)(22075201)the National Key Research and Development Program of China (2022YFB4101800)。
文摘The electrochemical CO_(2)reduction reaction to produce multi-carbon(C_(2+)) hydrocarbons or oxygenate compounds is a promising route to obtain a renewable fuel of high energy density.However,producing C_(2+)at high current densities is still a challenge.Herein,we develop a Cu-Zn alloy/Cu-Zn aluminate oxide composite electrocatalytic system for enhanced conversion of CO_(2)to C_(2+)products.The Cu-Zn-Al-Layered Double Hydroxide(LDH) is used as a precursor to decompose into uniform Cu-Zn oxide/Cu-Zn aluminate pre-catalyst.Under electrochemical reduction,Cu-Zn oxide generates Cu-Zn alloy while Cu-Zn aluminate oxide remains unchanged.The alloy and oxide are closely stacked and arranged alternately,and the aluminate oxide induces the strong electron interaction of Cu,Zn and Al,creating a large number of highly active reaction interfaces composed of 0 to+3 valence metal sites.With the help of the interface effect,the optimized Cu_(9)Zn_(1)/Cu_(0.8)Zn_(0.2)Al_(2)O_(4)catalyst achieves a Faradaic efficiency of 88.5% for C_(2+)products at a current density of 400 mA cm^(-2)at-1.15 V versus reversible hydrogen electrode.The in-situ Raman and attenuate total reflectance-infrared absorption spectroscopy(ATR-IRAS) spectra show that the aluminate oxide at the interface significantly enhances the adsorption and activation of CO_(2)and the dissociation of H2O and strengthens the adsorption of CO intermediates,and the alloy promotes the C-C coupling to produce C_(2+)products.This work provides an efficient strategy to construct highly active reaction interfaces for industrial-scale electrochemical CO_(2)RR.
基金sponsored by the National Natural Science Foundation of China(21808120,21978148)。
文摘Cu-based catalysts are widely employed for CO_(2) hydrogenation to methanol,which is expected as a promising process to achieving carbon neutrality.However,most Cu-based catalysts still suffer from low methanol yield with a passable CO_(2) conversion and lack insight into its reaction mechanism for guiding the design of catalysts.In this work,Cu^(+)/CeZrO_(x) interfaces are engineered by employing a series of ceria-zirconia solid solution catalysts with various Ce/Zr ratios,forming a Cu^(+)-O_(v)-Ce^(3+)structure where Cu^(+)atoms are bonded to the oxygen vacancies(O_(v))of ceria.Compared to Cu/CeO_(2) and Cu/ZrO_(2),the optimized catalyst(i.e.,Cu_(0.3)Ce_(0.3)Zr_(0.7))exhibits a much higher mass-specific methanol formation rate(192g_(MeOH)/kg_(cat)/h)at 240℃and 3 MPa.Through a series of in-situ and ex-situ characterization,it is revealed that oxygen vacancies in solid solutions can effectively assist the activation of CO_(2) and tune the electronic state of copper to promote the formation of Cu^(+)/CeZrO_(x) interfaces,which stabilizes the key*CO intermediate,inhibits its desorption and facilitates its further hydrogenation to methanol via the reverse watergas-shift(RWGS)+CO-Hydro pathway.Therefore,the concentration of*CO or the apparent Cu^(+)/(Cu^(+)+Cu^(0))ratio could be employed as a quantitative descriptor of the methanol formation rate.This work is expected to give a deep insight into the mechanism of metal/support interfaces in CO_(2) hydrogenation to methanol,offering an effective strategy to develop new catalysts with high performance.
基金financially supported by the National Natural Science Foundation of China (52102323, 51972298)the China Postdoctoral Science Foundation (2021M703055)+1 种基金the National Key R&D Program of China (2021YFB4001401)the Key Research Program of the Chinese Academy of Sciences (ZDRWCN-2021-3-1)。
文摘Garnet-type Li_7La_(3)Zr_(2)O_(12)(LLZO) has high ionic conductivity and good compatibility with lithium metal.High-temperature processing has been proven an effective method to decrease the interface resistance of cathodeILLZO.However,its application is still hindered by the interlayer co-diffusion with the cathode and high sintering temperature(>1200℃).In this work,a new garnet-type composite solid-state electrolyte(SSE) Li_(6.54)La_(2.96)Ba_(0.04)Zr_(1.5)Nb_(0.5)O_(12)-LiCoO_(2)(LLBZNO-LCO) is firstly proposed to improve the chemical stability and electrochemical properties of garnet with high-temperature processing.Small doses of LCO(3%) can significantly decrease the LCOISSE interface resistance from 121.2 to 10.1 Ω cm~2,while the sintering temperature of garnet-type LLBZNO decreases from 1230 to 1000℃.The all-solid-state battery based on the sintered LLBZNO-LCO SSE exhibits excellent cycling stability.Our approach achieves an enhanced LCOISSE interface and an improved sintering activity of garnet SSE,which provides a new strategy for optimizing the comprehensive performance of garnet SSE.