为提高电磁层析成像(electromagnetic tomography,EMT)技术在金属结构缺陷检测时图像重建的效果,研究了基于迭代硬阈值(iterative hard thresholding,IHT)算法的稀疏成像方法。该文对传统图像重建算法的出发点、计算过程进行分析,再根...为提高电磁层析成像(electromagnetic tomography,EMT)技术在金属结构缺陷检测时图像重建的效果,研究了基于迭代硬阈值(iterative hard thresholding,IHT)算法的稀疏成像方法。该文对传统图像重建算法的出发点、计算过程进行分析,再根据金属结构上缺陷分布的稀疏特性,选择稀疏成像方法;结合l_(2)、l_(1)、l_(0)范数约束下解的特点,选择l_(0)范数进行正则化约束解的范围,采用迭代硬阈值算法进行图像重建,并与Landweber迭代算法、Tikhonov正则化算法的图像重建效果进行对比。软件仿真和硬件实验均表明:l_(0)范数约束下的迭代硬阈值稀疏成像算法能够提高金属缺陷的图像重建质量;得到的图像相对误差比Landweber迭代算法、Tikhonov正则化算法降低10%;重建图像所用的时间减少一半。展开更多
文摘为提高电磁层析成像(electromagnetic tomography,EMT)技术在金属结构缺陷检测时图像重建的效果,研究了基于迭代硬阈值(iterative hard thresholding,IHT)算法的稀疏成像方法。该文对传统图像重建算法的出发点、计算过程进行分析,再根据金属结构上缺陷分布的稀疏特性,选择稀疏成像方法;结合l_(2)、l_(1)、l_(0)范数约束下解的特点,选择l_(0)范数进行正则化约束解的范围,采用迭代硬阈值算法进行图像重建,并与Landweber迭代算法、Tikhonov正则化算法的图像重建效果进行对比。软件仿真和硬件实验均表明:l_(0)范数约束下的迭代硬阈值稀疏成像算法能够提高金属缺陷的图像重建质量;得到的图像相对误差比Landweber迭代算法、Tikhonov正则化算法降低10%;重建图像所用的时间减少一半。