Weak signal reception is a very important and challenging problem for communication systems especially in the presence of non-Gaussian noise,and in which case the performance of optimal linear correlated receiver degr...Weak signal reception is a very important and challenging problem for communication systems especially in the presence of non-Gaussian noise,and in which case the performance of optimal linear correlated receiver degrades dramatically.Aiming at this,a novel uncorrelated reception scheme based on adaptive bistable stochastic resonance(ABSR)for a weak signal in additive Laplacian noise is investigated.By analyzing the key issue that the quantitative cooperative resonance matching relationship between the characteristics of the noisy signal and the nonlinear bistable system,an analytical expression of the bistable system parameters is derived.On this basis,by means of bistable system parameters self-adaptive adjustment,the counterintuitive stochastic resonance(SR)phenomenon can be easily generated at which the random noise is changed into a benefit to assist signal transmission.Finally,it is demonstrated that approximately 8dB bit error ratio(BER)performance improvement for the ABSR-based uncorrelated receiver when compared with the traditional uncorrelated receiver at low signal to noise ratio(SNR)conditions varying from-30dB to-5dB.展开更多
In this paper,a bandwidth-adjustable extended state observer(ABESO)is proposed for the systems with measurement noise.It is known that increasing the bandwidth of the observer improves the tracking speed but tolerates...In this paper,a bandwidth-adjustable extended state observer(ABESO)is proposed for the systems with measurement noise.It is known that increasing the bandwidth of the observer improves the tracking speed but tolerates noise,which conflicts with observation accuracy.Therefore,we introduce a bandwidth scaling factor such that ABESO is formulated to a 2-degree-of-freedom system.The observer gain is determined and the bandwidth scaling factor adjusts the bandwidth according to the tracking error.When the tracking error decreases,the bandwidth decreases to suppress the noise,otherwise the bandwidth does not change.It is proven that the error dynamics are bounded and converge in finite time.The relationship between the upper bound of the estimation error and the scaling factor is given.When the scaling factor is less than 1,the ABESO has higher estimation accuracy than the linear extended state observer(LESO).Simulations of an uncertain nonlinear system with compound disturbances show that the proposed ABESO can successfully estimate the total disturbance in noisy environments.The mean error of total disturbance of ABESO is 15.28% lower than that of LESO.展开更多
Effects of system size,coupling strength,and noise on vibrational resonance(VR)of globally coupled bistable systems are investigated.The power spectral amplifications obtained by the three methods all show that the VR...Effects of system size,coupling strength,and noise on vibrational resonance(VR)of globally coupled bistable systems are investigated.The power spectral amplifications obtained by the three methods all show that the VR exists over a wide range of parameter values.The increase in system size induces and enhances the VR,while the increase in noise intensity suppresses and eventually eliminates the VR.Both the stochastic resonance and the system size resonance can coexist with the VR in different parameter regions.This research has potential applications to the weak signal detection process in stochastic multi-body systems.展开更多
Massive data from observations,experiments and simulations of dynamical models in scientific and engineering fields make it desirable for data-driven methods to extract basic laws of these models.We present a novel me...Massive data from observations,experiments and simulations of dynamical models in scientific and engineering fields make it desirable for data-driven methods to extract basic laws of these models.We present a novel method to identify such high dimensional stochastic dynamical systems that are perturbed by a non-Gaussianα-stable Lévy noise.More explicitly,firstly a machine learning framework to solve the sparse regression problem is established to grasp the drift terms through one of nonlocal Kramers–Moyal formulas.Then the jump measure and intensity of the noise are disposed by the relationship with statistical characteristics of the process.Three examples are then given to demonstrate the feasibility.This approach proposes an effective way to understand the complex phenomena of systems under non-Gaussian fluctuations and illuminates some insights into the exploration for further typical dynamical indicators such as the maximum likelihood transition path or mean exit time of these stochastic systems.展开更多
Analyses of stable isotopes(C,O,H)in tree rings are increasingly important cross-disciplinary programs.The rapid development in this field documented in an increasing number of publications requires a comprehensive re...Analyses of stable isotopes(C,O,H)in tree rings are increasingly important cross-disciplinary programs.The rapid development in this field documented in an increasing number of publications requires a comprehensive review.This study includes a bibliometric analysis-based review to better understand research trends in tree ring stable isotope research.Overall,1475 publications were selected from the Web of Science Core Collection for 1974-2023.The findings are that:(1)numbers of annual publications and citations increased since 1974.From 1974 to 1980,there were around two relevant publications per year.However,from 2020 to 2022,this rose sharply to 109 publications per year.Likewise,average article citations were less than four per year before 1990,but were around four per article per year after 2000;(2)the major subjects using tree ring stable isotopes include forestry,geosciences,and environmental sciences,contributing to 42.5%of the total during 1974-2023;(3)the top three most productive institutions are the Chinese Academy of Sciences(423),the Swiss Federal Institute for Forest,Snow and Landscape Research(227),and the University of Arizona(204).These achievements result from strong collaborations;(4)review papers,for example,(Dawson et al.,Annu Rev Ecol Syst 33:507-559,2002)and(McCarroll and Loader,Quat Sci Rev 23:771-801,2004),are among the most cited,with more than 1000 citations;(5)tree ring stable isotope studies mainly focus on climatology and ecology,with atmospheric CO_(2) one of the most popular topics.Since 2010,precipitation and drought have received increasing attention.Based on this analysis,the research stages,key findings,debated issues,limitations and direc-tions for future research are summarized.This study serves as an important attempt to understand the progress on the use of stable isotopes in tree rings,providing scientific guid-ance for young researchers in this field.展开更多
Reducing the aerodynamic drag and noise levels of high-speed pantographs is important for promoting environmentally friendly,energy efficient and rapid advances in train technology.Using computational fluid dynamics t...Reducing the aerodynamic drag and noise levels of high-speed pantographs is important for promoting environmentally friendly,energy efficient and rapid advances in train technology.Using computational fluid dynamics theory and the K-FWH acoustic equation,a numerical simulation is conducted to investigate the aerodynamic characteristics of high-speed pantographs.A component optimization method is proposed as a possible solution to the problemof aerodynamic drag and noise in high-speed pantographs.The results of the study indicate that the panhead,base and insulator are the main contributors to aerodynamic drag and noise in high-speed pantographs.Therefore,a gradual optimization process is implemented to improve the most significant components that cause aerodynamic drag and noise.By optimizing the cross-sectional shape of the strips and insulators,the drag and noise caused by airflow separation and vortex shedding can be reduced.The aerodynamic drag of insulator with circular cross section and strips with rectangular cross section is the largest.Ellipsifying insulators and optimizing the chamfer angle and height of the windward surface of the strips can improve the aerodynamic performance of the pantograph.In addition,the streamlined fairing attached to the base can eliminate the complex flow and shield the radiated noise.In contrast to the original pantograph design,the improved pantograph shows a 21.1%reduction in aerodynamic drag and a 1.65 dBA reduction in aerodynamic noise.展开更多
Tree-ring width(RW),density,elemental com-position,and stable carbon and oxygen isotope(δ^(13)C,δ^(18)O)are widely used as proxies to assess climate change,ecology,and environmental pollution;however,a specific pret...Tree-ring width(RW),density,elemental com-position,and stable carbon and oxygen isotope(δ^(13)C,δ^(18)O)are widely used as proxies to assess climate change,ecology,and environmental pollution;however,a specific pretreat-ment has been needed for each proxy.Here,we developed a method by which each proxy can be measured in the same sample.First,the sample is polished for ring width meas-urement.After obtaining the ring width data,the sample is cut to form a 1-mm-thick wood plate.The sample is then mounted in a vertical sample holder,and gradually scanned by an X-ray beam.Simultaneously,the count rates of the fluorescent photons of elements(for chemical characteriza-tion)and a radiographic grayscale image(for wood density)are obtained,i.e.the density and the element content are obtained.Then,cellulose is isolated from the 1-mm wood plate by removal of lignin,and hemicellulose.After producing this cellulose plate,cellulose subsamples are separated by knife under the microscope for inter-annual and intra-annual stable carbon and oxygen isotope(δ^(13)C,δ^(18)O)analysis.Based on this method,RW,density,elemental composition,δ^(13)C,and δ^(18)O can be measured from the same sample,which reduces sample amount and treatment time,and is helpful for multi-proxy comparison and combination research.展开更多
Orthogonal frequency division multiplexing passive optical network(OFDM-PON) has superior anti-dispersion property to operate in the C-band of fiber for increased optical power budget. However,the downlink broadcast e...Orthogonal frequency division multiplexing passive optical network(OFDM-PON) has superior anti-dispersion property to operate in the C-band of fiber for increased optical power budget. However,the downlink broadcast exposes the physical layer vulnerable to the threat of illegal eavesdropping. Quantum noise stream cipher(QNSC) is a classic physical layer encryption method and well compatible with the OFDM-PON. Meanwhile, it is indispensable to exploit forward error correction(FEC) to control errors in data transmission. However, when QNSC and FEC are jointly coded, the redundant information becomes heavier and thus the code rate of the transmitted signal will be largely reduced. In this work, we propose a physical layer encryption scheme based on polar-code-assisted QNSC. In order to improve the code rate and security of the transmitted signal, we exploit chaotic sequences to yield the redundant bits and utilize the redundant information of the polar code to generate the higher-order encrypted signal in the QNSC scheme with the operation of the interleaver.We experimentally demonstrate the encrypted 16/64-QAM, 16/256-QAM, 16/1024-QAM, 16/4096-QAM QNSC signals transmitted over 30-km standard single mode fiber. For the transmitted 16/4096-QAM QNSC signal, compared with the conventional QNSC method, the proposed method increases the code rate from 0.1 to 0.32 with enhanced security.展开更多
The oceanic trace metals iron(Fe),nickel(Ni),copper(Cu),zinc(Zn),and cadmium(Cd)are crucial to marine phytoplankton growth and global carbon cycle,and the analysis of their stable isotopes can provide valuable insight...The oceanic trace metals iron(Fe),nickel(Ni),copper(Cu),zinc(Zn),and cadmium(Cd)are crucial to marine phytoplankton growth and global carbon cycle,and the analysis of their stable isotopes can provide valuable insights into their biogeochemical cycles within the ocean.However,the simultaneous isotopic analysis of multiple elements present in seawater is challenging because of their low concentrations,limited volumes of the test samples,and high salt matrix.In this study,we present the novel method developed for the simultaneous analysis of five isotope systems by 1 L seawater sample.In the developed method,the NOBIAS Chelate-PA1 resin was used to extract metals from seawater,the AG MP-1M anion-exchange resin to purify Cu,Fe,Zn,Cd,and the NOBIAS Chelate-PA1 resin to further extract Ni from the matrix elements.Finally,a multi-collector inductively coupled plasma mass spectroscope(MC-ICPMS)was employed for the isotopic measurements using a doublespike technique or sample-standard bracketing combined with internal normalization.This method exhibited low total procedural blanks(0.04 pg,0.04 pg,0.21 pg,0.15 pg,and 3 pg for Ni,Cu,Fe,Zn,and Cd,respectively)and high extraction efficiencies(100.5%±0.3%,100.2%±0.5%,97.8%±1.4%,99.9%±0.8%,and 100.1%±0.2%for Ni,Cu,Fe,Zn,and Cd,respectively).The external errors and external precisions of this method could be considered negligible.The proposed method was further tested on the seawater samples obtained from the whole vertical profile of a water column during the Chinese GEOTRACES GP09 cruise in the Northwest Pacific,and the results showed good agreement with previous related data.This innovative method will contribute to the advancement of isotope research and enhance our understanding of the marine biogeochemical cycling of Fe,Ni,Cu,Zn,and Cd.展开更多
Facing the complex variable high-temperature environment,electromagnetic wave(EMW)absorbing materials maintaining high stability and satisfying absorbing properties is essential.This study focused on the synthesis and...Facing the complex variable high-temperature environment,electromagnetic wave(EMW)absorbing materials maintaining high stability and satisfying absorbing properties is essential.This study focused on the synthesis and EMW absorbing performance evaluation of TiN/Fe_(2)N/C composite materials,which were prepared using electrostatic spinning followed by a high-temperature nitridation process.The TiN/Fe_(2)N/C fibers constructed a well-developed conductive network that generates considerable conduction loss.The heterogeneous interfaces between different components generated a significant level of interfacial polarization.Thanks to the synergistic effect of stable dielectric loss and optimized impedance matching,the TiN/Fe_(2)N/C composite materials demonstrated excellent and stable absorption performance across a wide temperature range(293-453 K).Moreover,TiN/Fe_(2)N/C-15 achieved a minimum reflection loss(RL)of−48.01 dB and an effective absorption bandwidth(EAB)of 3.64 GHz at 2.1 mm and 373 K.This work provides new insights into the development of high-efficiency and stabile EMW absorbing materials under complex variable high-temperature conditions.展开更多
Global energy and environmental issues are becoming increasingly problematic,and the vibration and noise problem of 110 kV transformers,which are the most widely distributed,have attracted widespread attention from bo...Global energy and environmental issues are becoming increasingly problematic,and the vibration and noise problem of 110 kV transformers,which are the most widely distributed,have attracted widespread attention from both inside and outside the industry.DC bias is one of the main contributing factors to vibration noise during the normal operation of transformers.To clarify the vibration and noise mechanism of a 110 kV transformer under a DC bias,a multi-field coupling model of a 110 kV transformer was established using the finite element method.The electromagnetic,vibration,and noise characteristics during the DC bias process were compared and quantified through field circuit coupling in parallel with the power frequency of AC,harmonic,and DC power sources.It was found that a DC bias can cause significant distortions in the magnetic flux density,force,and displacement distributions of the core and winding.The contributions of the DC bias effect to the core and winding are different at Kdc=0.85.At this point,the core approached saturation,and the increase in the core force and displacement slowed.However,the saturation of the core increased the leakage flux,and the stress and displacement of the winding increased faster.The sound field distribution characteristics of the 110 kV transformer under a DC bias are related to the force characteristics.When the DC bias coefficient was 1.25,the noise sound pressure level reached 73.6 dB.展开更多
Zhanjiang Bay is a major aquaculture area in China with many types of mariculture products(such as oysters,fish,and shrimp).The culture area and shrimp output in Zhanjiang Bay are ranked first in China.We investigated...Zhanjiang Bay is a major aquaculture area in China with many types of mariculture products(such as oysters,fish,and shrimp).The culture area and shrimp output in Zhanjiang Bay are ranked first in China.We investigated the total organic carbon(TOC),total nitrogen(TN),TOC/TN ratio,and stable isotopes(δ^(13)C and δ^(15)N) of the fish and shrimp feed,fish and shrimp feces,and sedimentary organic matter(SOM) in and around different aquaculture areas of northeastern Zhanjiang B ay to study the impact of aquaculture activities on SOM.The average TOC contents of fish and shrimp feed were 39.20%±0.91% and 39.29%±0.21%,respectively.The average TOC content in the surface sediments of the oyster culture area,the mixed(fish and shrimp) culture area,and the cage fish farm area were 0.66%,0.88%±0.10%,and 0.58%±0.19%,respectively,which may indicate that mixed culture had a greater impact on SOM.The relatively high TOC and TN contents and relatively low TOC/TN ratios,and δ^(15)N values in the upper layer of the core sediment in the mixed culture area could also support the significant influence of mixed culture.The average δ^(13)C and δ^(15)N values of fish and shrimp feed were -20.6‰±2.2‰ and 1.8‰±1.2‰,respectively,which were different from the isotopic values of SOM in the study area.δ^(13)C and δ^(15)N values for SOM in different aquaculture areas were different from those of nearby reference stations,probably reflecting the influence of aquaculture.The δ^(13)C and δ^(15)N values in the oyster culture area(-25.9‰ and6.0‰,respectively) seemed to have reduced δ^(13)C and enriched δ^(15)N relative to those of the reference station(-24.6‰ and 5.8‰,respectively).This may reflect the influence of organic matter on oyster culture.The δ^(15)N value of the station in the mixed culture area(7.1‰±0.4‰) seemed to be relatively enriched in δ^(15)N relative to that of the reference station(6.6‰).Sedimentation and the subsequent degradation of organic matter from mixed cultures may have contributed to this phenomenon.The surface sediment at the cage fish farm area seemed to be affected by fish feces and primary production based on the indication of δ^(13)C and δ^(15)N values.The sediment core at the mixed culture region(NS6) had lower TOC/TN ratios and more positive δ^(13)C and δ^(15)N values than the sediment core at the oyster culture area,suggesting a higher proportionate contribution of marine organic matter in the mixed culture area.In summary,oyster culture,mixed culture,and cage fish culture in northeastern Zhanjiang Bay had a certain degree of impact on SOM,and mixed culture had more significant influences on SOM based on the high TOC contents and the significant vertical variations of TOC/TN ratio and δ^(15)N value in the sediment of this area.This study provides new insights into the impact of aquaculture activities on SOM content.展开更多
This paper presents a comprehensive framework for analyzing phase transitions in collective models such as theVicsek model under various noise types. The Vicsek model, focusing on understanding the collective behavior...This paper presents a comprehensive framework for analyzing phase transitions in collective models such as theVicsek model under various noise types. The Vicsek model, focusing on understanding the collective behaviors of socialanimals, is known due to its discontinuous phase transitions under vector noise. However, its behavior under scalar noiseremains less conclusive. Renowned for its efficacy in the analysis of complex systems under both equilibrium and nonequilibriumstates, the eigen microstate method is employed here for a quantitative examination of the phase transitions inthe Vicsek model under both vector and scalar noises. The study finds that the Vicsek model exhibits discontinuous phasetransitions regardless of noise type. Furthermore, the dichotomy method is utilized to identify the critical points for thesephase transitions. A significant finding is the observed increase in the critical point for discontinuous phase transitions withescalation of population density.展开更多
针对滚动轴承在小样本条件下诊断准确率低和泛化性弱的问题,提出了一种基于注意力特征融合的深度稳定学习(Attention Feature Fusion and Deep Stable Learning,AFF-Stablenet)模型的故障诊断方法。该方法首先使用经验模态分解(Empirica...针对滚动轴承在小样本条件下诊断准确率低和泛化性弱的问题,提出了一种基于注意力特征融合的深度稳定学习(Attention Feature Fusion and Deep Stable Learning,AFF-Stablenet)模型的故障诊断方法。该方法首先使用经验模态分解(Empirical Mode Decompositim,EMD)将样本分解成多段频率的子信号,求取子信号与原始信号的互相关系数,选择系数较高的前三阶子信号;利用连续小波变换(Continuws Narelet Transorm,CWT)将子信号转换为时频图表示,通过注意力特征融合的方式将这些时频图特征进行融合;最后将融合特征输入到深度稳定学习(Stablenet)模型进行训练与预测。为验证模型的有效性,采用凯斯西储大学轴承数据集进行各组对比试验,都灵理工大学轴承数据集进行验证。实验结果表明,AFF-Stablenet模型在小样本情况下的泛化性和鲁棒性均强于其他对比模型,证明了模型的优越性。展开更多
Rechargeable magnesium batteries(RMBs)hold promise for offering higher volumetric energy density and safety features,attracting increasing research interest as the next post lithium-ion batteries.Developing high perfo...Rechargeable magnesium batteries(RMBs)hold promise for offering higher volumetric energy density and safety features,attracting increasing research interest as the next post lithium-ion batteries.Developing high performance cathode material by inducing multi-electron reaction process as well as maintaining structural stability is the key to the development and application of RMBs.Herein,multielectron reaction occurred in VS_(4)by simple W doping strategy.W doping induces valence of partial V as V^(2+)and V^(3+)in VS_(4)structure,and then stimulates electrochemical reaction involving multi-electrons in 0.5%W-V-S.The flower-like microsphere morphology as well as rich S vacancies is also modulated by W doping to neutralize structure change in such multi-electron reaction process.The fabricated 0.5%W-V-S delivers higher specific capacity(149.3 m A h g^(-1)at 50 m A g^(-1),which is 1.6 times higher than that of VS_(4)),superior rate capability(76 mA h g^(-1)at 1000 mA g^(-1)),and stable cycling performance(1500cycles with capacity retention ratio of 93.8%).Besides that,pesudocapaticance-like contribution analysis as well as galvanostatic intermittent titration technique(GITT)further confirms the enhanced Mg^(2+)storage kinetics during such multi-electron involved electrochemical reaction process.Such discovery provides new insights into the designing of multi-electron reaction process in cathode as well as neutralizing structural change during such reaction for realizing superior electrochemical performance in energy storage devices.展开更多
As a crucial component of terrestrial ecosystems,urban forests play a pivotal role in protecting urban biodiversity by providing suitable habitats for acoustic spaces.Previous studies note that vegetation structure is...As a crucial component of terrestrial ecosystems,urban forests play a pivotal role in protecting urban biodiversity by providing suitable habitats for acoustic spaces.Previous studies note that vegetation structure is a key factor influencing bird sounds in urban forests;hence,adjusting the frequency composition may be a strategy for birds to avoid anthropogenic noise to mask their songs.However,it is unknown whether the response mechanisms of bird vocalizations to vegetation structure remain consistent despite being impacted by anthropogenic noise.It was hypothesized that anthropogenic noise in urban forests occupies the low-frequency space of bird songs,leading to a possible reshaping of the acoustic niches of forests,and the vegetation structure of urban forests is the critical factor that shapes the acoustic space for bird vocalization.Passive acoustic monitoring in various urban forests was used to monitor natural and anthropogenic noises,and sounds were classified into three acoustic scenes(bird sounds,human sounds,and bird-human sounds)to determine interconnections between bird sounds,anthropogenic noise,and vegetation structure.Anthropogenic noise altered the acoustic niche of urban forests by intruding into the low-frequency space used by birds,and vegetation structures related to volume(trunk volume and branch volume)and density(number of branches and leaf area index)significantly impact the diversity of bird sounds.Our findings indicate that the response to low and high frequency signals to vegetation structure is distinct.By clarifying this relationship,our results contribute to understanding of how vegetation structure influences bird sounds in urban forests impacted by anthropogenic noise.展开更多
This letter proposes a sliced-gated-convolutional neural network with belief propagation(SGCNN-BP) architecture for decoding long codes under correlated noise. The basic idea of SGCNNBP is using Neural Networks(NN) to...This letter proposes a sliced-gated-convolutional neural network with belief propagation(SGCNN-BP) architecture for decoding long codes under correlated noise. The basic idea of SGCNNBP is using Neural Networks(NN) to transform the correlated noise into white noise, setting up the optimal condition for a standard BP decoder that takes the output from the NN. A gate-controlled neuron is used to regulate information flow and an optional operation—slicing is adopted to reduce parameters and lower training complexity. Simulation results show that SGCNN-BP has much better performance(with the largest gap being 5dB improvement) than a single BP decoder and achieves a nearly 1dB improvement compared to Fully Convolutional Networks(FCN).展开更多
Research on discrete memristor-based neural networks has received much attention.However,current research mainly focuses on memristor–based discrete homogeneous neuron networks,while memristor-coupled discrete hetero...Research on discrete memristor-based neural networks has received much attention.However,current research mainly focuses on memristor–based discrete homogeneous neuron networks,while memristor-coupled discrete heterogeneous neuron networks are rarely reported.In this study,a new four-stable discrete locally active memristor is proposed and its nonvolatile and locally active properties are verified by its power-off plot and DC V–I diagram.Based on two-dimensional(2D)discrete Izhikevich neuron and 2D discrete Chialvo neuron,a heterogeneous discrete neuron network is constructed by using the proposed discrete memristor as a coupling synapse connecting the two heterogeneous neurons.Considering the coupling strength as the control parameter,chaotic firing,periodic firing,and hyperchaotic firing patterns are revealed.In particular,multiple coexisting firing patterns are observed,which are induced by different initial values of the memristor.Phase synchronization between the two heterogeneous neurons is discussed and it is found that they can achieve perfect synchronous at large coupling strength.Furthermore,the effect of Gaussian white noise on synchronization behaviors is also explored.We demonstrate that the presence of noise not only leads to the transition of firing patterns,but also achieves the phase synchronization between two heterogeneous neurons under low coupling strength.展开更多
基金supported in part by the National Natural Science Foundation of China(62001356)in part by the National Natural Science Foundation for Distinguished Young Scholar(61825104)+1 种基金in part by the National Key Research and Development Program of China(2022YFC3301300)in part by the Innovative Research Groups of the National Natural Science Foundation of China(62121001)。
文摘Weak signal reception is a very important and challenging problem for communication systems especially in the presence of non-Gaussian noise,and in which case the performance of optimal linear correlated receiver degrades dramatically.Aiming at this,a novel uncorrelated reception scheme based on adaptive bistable stochastic resonance(ABSR)for a weak signal in additive Laplacian noise is investigated.By analyzing the key issue that the quantitative cooperative resonance matching relationship between the characteristics of the noisy signal and the nonlinear bistable system,an analytical expression of the bistable system parameters is derived.On this basis,by means of bistable system parameters self-adaptive adjustment,the counterintuitive stochastic resonance(SR)phenomenon can be easily generated at which the random noise is changed into a benefit to assist signal transmission.Finally,it is demonstrated that approximately 8dB bit error ratio(BER)performance improvement for the ABSR-based uncorrelated receiver when compared with the traditional uncorrelated receiver at low signal to noise ratio(SNR)conditions varying from-30dB to-5dB.
基金supported by the National Natural Science Foundation of China(61873126)。
文摘In this paper,a bandwidth-adjustable extended state observer(ABESO)is proposed for the systems with measurement noise.It is known that increasing the bandwidth of the observer improves the tracking speed but tolerates noise,which conflicts with observation accuracy.Therefore,we introduce a bandwidth scaling factor such that ABESO is formulated to a 2-degree-of-freedom system.The observer gain is determined and the bandwidth scaling factor adjusts the bandwidth according to the tracking error.When the tracking error decreases,the bandwidth decreases to suppress the noise,otherwise the bandwidth does not change.It is proven that the error dynamics are bounded and converge in finite time.The relationship between the upper bound of the estimation error and the scaling factor is given.When the scaling factor is less than 1,the ABESO has higher estimation accuracy than the linear extended state observer(LESO).Simulations of an uncertain nonlinear system with compound disturbances show that the proposed ABESO can successfully estimate the total disturbance in noisy environments.The mean error of total disturbance of ABESO is 15.28% lower than that of LESO.
基金Project supported by the Xing Dian Talents Support Project of Yunnan Province(Grant No.YNWR-QNBJ-2018-0040)the Youth Project of Applied Basic Research of Yunnan Science(Grant No.202201AU070062)the Yunnan University’s Research Innovation Fund for Graduate Students(Grant No.KC-22221171).
文摘Effects of system size,coupling strength,and noise on vibrational resonance(VR)of globally coupled bistable systems are investigated.The power spectral amplifications obtained by the three methods all show that the VR exists over a wide range of parameter values.The increase in system size induces and enhances the VR,while the increase in noise intensity suppresses and eventually eliminates the VR.Both the stochastic resonance and the system size resonance can coexist with the VR in different parameter regions.This research has potential applications to the weak signal detection process in stochastic multi-body systems.
基金the National Natural Science Foundation of China(Grant No.12172167)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)。
文摘Massive data from observations,experiments and simulations of dynamical models in scientific and engineering fields make it desirable for data-driven methods to extract basic laws of these models.We present a novel method to identify such high dimensional stochastic dynamical systems that are perturbed by a non-Gaussianα-stable Lévy noise.More explicitly,firstly a machine learning framework to solve the sparse regression problem is established to grasp the drift terms through one of nonlocal Kramers–Moyal formulas.Then the jump measure and intensity of the noise are disposed by the relationship with statistical characteristics of the process.Three examples are then given to demonstrate the feasibility.This approach proposes an effective way to understand the complex phenomena of systems under non-Gaussian fluctuations and illuminates some insights into the exploration for further typical dynamical indicators such as the maximum likelihood transition path or mean exit time of these stochastic systems.
基金This study was supported by the National Natural Science Foundation of China(Grant Number:42007407,42022059)the Sino-German mobility program(M-0393)+1 种基金the Key Research Program of the Institute of Geology and Geophysics(CAS Grant IGGCAS-201905)the CAS Youth Interdisciplinary Team(JCTD-2021-05).
文摘Analyses of stable isotopes(C,O,H)in tree rings are increasingly important cross-disciplinary programs.The rapid development in this field documented in an increasing number of publications requires a comprehensive review.This study includes a bibliometric analysis-based review to better understand research trends in tree ring stable isotope research.Overall,1475 publications were selected from the Web of Science Core Collection for 1974-2023.The findings are that:(1)numbers of annual publications and citations increased since 1974.From 1974 to 1980,there were around two relevant publications per year.However,from 2020 to 2022,this rose sharply to 109 publications per year.Likewise,average article citations were less than four per year before 1990,but were around four per article per year after 2000;(2)the major subjects using tree ring stable isotopes include forestry,geosciences,and environmental sciences,contributing to 42.5%of the total during 1974-2023;(3)the top three most productive institutions are the Chinese Academy of Sciences(423),the Swiss Federal Institute for Forest,Snow and Landscape Research(227),and the University of Arizona(204).These achievements result from strong collaborations;(4)review papers,for example,(Dawson et al.,Annu Rev Ecol Syst 33:507-559,2002)and(McCarroll and Loader,Quat Sci Rev 23:771-801,2004),are among the most cited,with more than 1000 citations;(5)tree ring stable isotope studies mainly focus on climatology and ecology,with atmospheric CO_(2) one of the most popular topics.Since 2010,precipitation and drought have received increasing attention.Based on this analysis,the research stages,key findings,debated issues,limitations and direc-tions for future research are summarized.This study serves as an important attempt to understand the progress on the use of stable isotopes in tree rings,providing scientific guid-ance for young researchers in this field.
基金supported by National Natural Science Foundation of China(12372049)Science and Technology Program of China National Accreditation Service for Confor-mity Assessment(2022CNAS15)+1 种基金Sichuan Science and Technology Program(2023JDRC0062)Independent Project of State Key Laboratory of Rail Transit Vehicle System(2023TPL-T06).
文摘Reducing the aerodynamic drag and noise levels of high-speed pantographs is important for promoting environmentally friendly,energy efficient and rapid advances in train technology.Using computational fluid dynamics theory and the K-FWH acoustic equation,a numerical simulation is conducted to investigate the aerodynamic characteristics of high-speed pantographs.A component optimization method is proposed as a possible solution to the problemof aerodynamic drag and noise in high-speed pantographs.The results of the study indicate that the panhead,base and insulator are the main contributors to aerodynamic drag and noise in high-speed pantographs.Therefore,a gradual optimization process is implemented to improve the most significant components that cause aerodynamic drag and noise.By optimizing the cross-sectional shape of the strips and insulators,the drag and noise caused by airflow separation and vortex shedding can be reduced.The aerodynamic drag of insulator with circular cross section and strips with rectangular cross section is the largest.Ellipsifying insulators and optimizing the chamfer angle and height of the windward surface of the strips can improve the aerodynamic performance of the pantograph.In addition,the streamlined fairing attached to the base can eliminate the complex flow and shield the radiated noise.In contrast to the original pantograph design,the improved pantograph shows a 21.1%reduction in aerodynamic drag and a 1.65 dBA reduction in aerodynamic noise.
基金supported the National Natural Science Foundation of China (42022059,41888101)the Strategic Priority Research Program of the Chinese Academy of Sciences,China (Grant No.XDB26020000)+1 种基金the Key Research Program of the Institute of Geology and Geophysics (CAS Grant IGGCAS-201905)the CAS Youth Interdisciplinary Team (JCTD-2021-05).
文摘Tree-ring width(RW),density,elemental com-position,and stable carbon and oxygen isotope(δ^(13)C,δ^(18)O)are widely used as proxies to assess climate change,ecology,and environmental pollution;however,a specific pretreat-ment has been needed for each proxy.Here,we developed a method by which each proxy can be measured in the same sample.First,the sample is polished for ring width meas-urement.After obtaining the ring width data,the sample is cut to form a 1-mm-thick wood plate.The sample is then mounted in a vertical sample holder,and gradually scanned by an X-ray beam.Simultaneously,the count rates of the fluorescent photons of elements(for chemical characteriza-tion)and a radiographic grayscale image(for wood density)are obtained,i.e.the density and the element content are obtained.Then,cellulose is isolated from the 1-mm wood plate by removal of lignin,and hemicellulose.After producing this cellulose plate,cellulose subsamples are separated by knife under the microscope for inter-annual and intra-annual stable carbon and oxygen isotope(δ^(13)C,δ^(18)O)analysis.Based on this method,RW,density,elemental composition,δ^(13)C,and δ^(18)O can be measured from the same sample,which reduces sample amount and treatment time,and is helpful for multi-proxy comparison and combination research.
基金supported in part by the National Natural Science Foundation of China Project under Grant 62075147the Suzhou Industry Technological Innovation Projects under Grant SYG202348.
文摘Orthogonal frequency division multiplexing passive optical network(OFDM-PON) has superior anti-dispersion property to operate in the C-band of fiber for increased optical power budget. However,the downlink broadcast exposes the physical layer vulnerable to the threat of illegal eavesdropping. Quantum noise stream cipher(QNSC) is a classic physical layer encryption method and well compatible with the OFDM-PON. Meanwhile, it is indispensable to exploit forward error correction(FEC) to control errors in data transmission. However, when QNSC and FEC are jointly coded, the redundant information becomes heavier and thus the code rate of the transmitted signal will be largely reduced. In this work, we propose a physical layer encryption scheme based on polar-code-assisted QNSC. In order to improve the code rate and security of the transmitted signal, we exploit chaotic sequences to yield the redundant bits and utilize the redundant information of the polar code to generate the higher-order encrypted signal in the QNSC scheme with the operation of the interleaver.We experimentally demonstrate the encrypted 16/64-QAM, 16/256-QAM, 16/1024-QAM, 16/4096-QAM QNSC signals transmitted over 30-km standard single mode fiber. For the transmitted 16/4096-QAM QNSC signal, compared with the conventional QNSC method, the proposed method increases the code rate from 0.1 to 0.32 with enhanced security.
基金The National Key Research and Development Program of China under contract No.2022YFE0136500the National Nature Science Foundation of China under contract Nos 41890801 and 42076227the Shanghai Pilot Program for Basic Research-Shanghai Jiao Tong University under contract No.21TQ1400201.
文摘The oceanic trace metals iron(Fe),nickel(Ni),copper(Cu),zinc(Zn),and cadmium(Cd)are crucial to marine phytoplankton growth and global carbon cycle,and the analysis of their stable isotopes can provide valuable insights into their biogeochemical cycles within the ocean.However,the simultaneous isotopic analysis of multiple elements present in seawater is challenging because of their low concentrations,limited volumes of the test samples,and high salt matrix.In this study,we present the novel method developed for the simultaneous analysis of five isotope systems by 1 L seawater sample.In the developed method,the NOBIAS Chelate-PA1 resin was used to extract metals from seawater,the AG MP-1M anion-exchange resin to purify Cu,Fe,Zn,Cd,and the NOBIAS Chelate-PA1 resin to further extract Ni from the matrix elements.Finally,a multi-collector inductively coupled plasma mass spectroscope(MC-ICPMS)was employed for the isotopic measurements using a doublespike technique or sample-standard bracketing combined with internal normalization.This method exhibited low total procedural blanks(0.04 pg,0.04 pg,0.21 pg,0.15 pg,and 3 pg for Ni,Cu,Fe,Zn,and Cd,respectively)and high extraction efficiencies(100.5%±0.3%,100.2%±0.5%,97.8%±1.4%,99.9%±0.8%,and 100.1%±0.2%for Ni,Cu,Fe,Zn,and Cd,respectively).The external errors and external precisions of this method could be considered negligible.The proposed method was further tested on the seawater samples obtained from the whole vertical profile of a water column during the Chinese GEOTRACES GP09 cruise in the Northwest Pacific,and the results showed good agreement with previous related data.This innovative method will contribute to the advancement of isotope research and enhance our understanding of the marine biogeochemical cycling of Fe,Ni,Cu,Zn,and Cd.
基金financially supported by the Natural Science Foundation of Henan Province Youth Fund of China(No.242300421466)the Key Scientific Research Project Plan in Universities of Henan Province,China(No.23A430037)+1 种基金the Research Project of Xuchang University,China(No.2024ZD004)the College Students’Innovation and Entrepreneurship Training Program of China(No.202410480008).
文摘Facing the complex variable high-temperature environment,electromagnetic wave(EMW)absorbing materials maintaining high stability and satisfying absorbing properties is essential.This study focused on the synthesis and EMW absorbing performance evaluation of TiN/Fe_(2)N/C composite materials,which were prepared using electrostatic spinning followed by a high-temperature nitridation process.The TiN/Fe_(2)N/C fibers constructed a well-developed conductive network that generates considerable conduction loss.The heterogeneous interfaces between different components generated a significant level of interfacial polarization.Thanks to the synergistic effect of stable dielectric loss and optimized impedance matching,the TiN/Fe_(2)N/C composite materials demonstrated excellent and stable absorption performance across a wide temperature range(293-453 K).Moreover,TiN/Fe_(2)N/C-15 achieved a minimum reflection loss(RL)of−48.01 dB and an effective absorption bandwidth(EAB)of 3.64 GHz at 2.1 mm and 373 K.This work provides new insights into the development of high-efficiency and stabile EMW absorbing materials under complex variable high-temperature conditions.
基金supported by the Key R&D Program of Shandong Province(2021CXGC010210).
文摘Global energy and environmental issues are becoming increasingly problematic,and the vibration and noise problem of 110 kV transformers,which are the most widely distributed,have attracted widespread attention from both inside and outside the industry.DC bias is one of the main contributing factors to vibration noise during the normal operation of transformers.To clarify the vibration and noise mechanism of a 110 kV transformer under a DC bias,a multi-field coupling model of a 110 kV transformer was established using the finite element method.The electromagnetic,vibration,and noise characteristics during the DC bias process were compared and quantified through field circuit coupling in parallel with the power frequency of AC,harmonic,and DC power sources.It was found that a DC bias can cause significant distortions in the magnetic flux density,force,and displacement distributions of the core and winding.The contributions of the DC bias effect to the core and winding are different at Kdc=0.85.At this point,the core approached saturation,and the increase in the core force and displacement slowed.However,the saturation of the core increased the leakage flux,and the stress and displacement of the winding increased faster.The sound field distribution characteristics of the 110 kV transformer under a DC bias are related to the force characteristics.When the DC bias coefficient was 1.25,the noise sound pressure level reached 73.6 dB.
基金The National Natural Science Foundation of China under contract No.42276047the Guangdong Basic and Applied Basic Research Foundation under contract Nos 2023A1515110473 and 2021A1515110172+1 种基金the Program for Scientific Research Start-up Funds of Guangdong Ocean University under contract No.R17058the National College Student Innovation and Entrepreneurship Training Program Project under contract No.202310566007。
文摘Zhanjiang Bay is a major aquaculture area in China with many types of mariculture products(such as oysters,fish,and shrimp).The culture area and shrimp output in Zhanjiang Bay are ranked first in China.We investigated the total organic carbon(TOC),total nitrogen(TN),TOC/TN ratio,and stable isotopes(δ^(13)C and δ^(15)N) of the fish and shrimp feed,fish and shrimp feces,and sedimentary organic matter(SOM) in and around different aquaculture areas of northeastern Zhanjiang B ay to study the impact of aquaculture activities on SOM.The average TOC contents of fish and shrimp feed were 39.20%±0.91% and 39.29%±0.21%,respectively.The average TOC content in the surface sediments of the oyster culture area,the mixed(fish and shrimp) culture area,and the cage fish farm area were 0.66%,0.88%±0.10%,and 0.58%±0.19%,respectively,which may indicate that mixed culture had a greater impact on SOM.The relatively high TOC and TN contents and relatively low TOC/TN ratios,and δ^(15)N values in the upper layer of the core sediment in the mixed culture area could also support the significant influence of mixed culture.The average δ^(13)C and δ^(15)N values of fish and shrimp feed were -20.6‰±2.2‰ and 1.8‰±1.2‰,respectively,which were different from the isotopic values of SOM in the study area.δ^(13)C and δ^(15)N values for SOM in different aquaculture areas were different from those of nearby reference stations,probably reflecting the influence of aquaculture.The δ^(13)C and δ^(15)N values in the oyster culture area(-25.9‰ and6.0‰,respectively) seemed to have reduced δ^(13)C and enriched δ^(15)N relative to those of the reference station(-24.6‰ and 5.8‰,respectively).This may reflect the influence of organic matter on oyster culture.The δ^(15)N value of the station in the mixed culture area(7.1‰±0.4‰) seemed to be relatively enriched in δ^(15)N relative to that of the reference station(6.6‰).Sedimentation and the subsequent degradation of organic matter from mixed cultures may have contributed to this phenomenon.The surface sediment at the cage fish farm area seemed to be affected by fish feces and primary production based on the indication of δ^(13)C and δ^(15)N values.The sediment core at the mixed culture region(NS6) had lower TOC/TN ratios and more positive δ^(13)C and δ^(15)N values than the sediment core at the oyster culture area,suggesting a higher proportionate contribution of marine organic matter in the mixed culture area.In summary,oyster culture,mixed culture,and cage fish culture in northeastern Zhanjiang Bay had a certain degree of impact on SOM,and mixed culture had more significant influences on SOM based on the high TOC contents and the significant vertical variations of TOC/TN ratio and δ^(15)N value in the sediment of this area.This study provides new insights into the impact of aquaculture activities on SOM content.
基金the National Natural Science Foundation of China(Grant No.62273033).
文摘This paper presents a comprehensive framework for analyzing phase transitions in collective models such as theVicsek model under various noise types. The Vicsek model, focusing on understanding the collective behaviors of socialanimals, is known due to its discontinuous phase transitions under vector noise. However, its behavior under scalar noiseremains less conclusive. Renowned for its efficacy in the analysis of complex systems under both equilibrium and nonequilibriumstates, the eigen microstate method is employed here for a quantitative examination of the phase transitions inthe Vicsek model under both vector and scalar noises. The study finds that the Vicsek model exhibits discontinuous phasetransitions regardless of noise type. Furthermore, the dichotomy method is utilized to identify the critical points for thesephase transitions. A significant finding is the observed increase in the critical point for discontinuous phase transitions withescalation of population density.
基金supported by the National Natural Science Foundation of China under Grant No.52072196,52002200,52102106,52202262,22379081,and 22379080Major Basic Research Program of the Natural Science Foundation of Shandong Province under Grant No.ZR2020ZD09+1 种基金the Natural Science Foundation of Shandong Province under Grant No.ZR2020QE063,ZR202108180009,ZR2023QE059the Postdoctoral Program in Qingdao under No.QDBSH20220202019。
文摘Rechargeable magnesium batteries(RMBs)hold promise for offering higher volumetric energy density and safety features,attracting increasing research interest as the next post lithium-ion batteries.Developing high performance cathode material by inducing multi-electron reaction process as well as maintaining structural stability is the key to the development and application of RMBs.Herein,multielectron reaction occurred in VS_(4)by simple W doping strategy.W doping induces valence of partial V as V^(2+)and V^(3+)in VS_(4)structure,and then stimulates electrochemical reaction involving multi-electrons in 0.5%W-V-S.The flower-like microsphere morphology as well as rich S vacancies is also modulated by W doping to neutralize structure change in such multi-electron reaction process.The fabricated 0.5%W-V-S delivers higher specific capacity(149.3 m A h g^(-1)at 50 m A g^(-1),which is 1.6 times higher than that of VS_(4)),superior rate capability(76 mA h g^(-1)at 1000 mA g^(-1)),and stable cycling performance(1500cycles with capacity retention ratio of 93.8%).Besides that,pesudocapaticance-like contribution analysis as well as galvanostatic intermittent titration technique(GITT)further confirms the enhanced Mg^(2+)storage kinetics during such multi-electron involved electrochemical reaction process.Such discovery provides new insights into the designing of multi-electron reaction process in cathode as well as neutralizing structural change during such reaction for realizing superior electrochemical performance in energy storage devices.
基金the National Natural Science Foundation of China(32201338)Science Technology Program from the Forestry Administration of Guangdong Province(2021KJCX017)+1 种基金Guangzhou Municipal Science and Technology Bureau Program(2023A04J0086)Shenzhen Key Laboratory of Southern Subtropical Plant Diversity。
文摘As a crucial component of terrestrial ecosystems,urban forests play a pivotal role in protecting urban biodiversity by providing suitable habitats for acoustic spaces.Previous studies note that vegetation structure is a key factor influencing bird sounds in urban forests;hence,adjusting the frequency composition may be a strategy for birds to avoid anthropogenic noise to mask their songs.However,it is unknown whether the response mechanisms of bird vocalizations to vegetation structure remain consistent despite being impacted by anthropogenic noise.It was hypothesized that anthropogenic noise in urban forests occupies the low-frequency space of bird songs,leading to a possible reshaping of the acoustic niches of forests,and the vegetation structure of urban forests is the critical factor that shapes the acoustic space for bird vocalization.Passive acoustic monitoring in various urban forests was used to monitor natural and anthropogenic noises,and sounds were classified into three acoustic scenes(bird sounds,human sounds,and bird-human sounds)to determine interconnections between bird sounds,anthropogenic noise,and vegetation structure.Anthropogenic noise altered the acoustic niche of urban forests by intruding into the low-frequency space used by birds,and vegetation structures related to volume(trunk volume and branch volume)and density(number of branches and leaf area index)significantly impact the diversity of bird sounds.Our findings indicate that the response to low and high frequency signals to vegetation structure is distinct.By clarifying this relationship,our results contribute to understanding of how vegetation structure influences bird sounds in urban forests impacted by anthropogenic noise.
基金supported by Beijing Natural Science Foundation (L202003)。
文摘This letter proposes a sliced-gated-convolutional neural network with belief propagation(SGCNN-BP) architecture for decoding long codes under correlated noise. The basic idea of SGCNNBP is using Neural Networks(NN) to transform the correlated noise into white noise, setting up the optimal condition for a standard BP decoder that takes the output from the NN. A gate-controlled neuron is used to regulate information flow and an optional operation—slicing is adopted to reduce parameters and lower training complexity. Simulation results show that SGCNN-BP has much better performance(with the largest gap being 5dB improvement) than a single BP decoder and achieves a nearly 1dB improvement compared to Fully Convolutional Networks(FCN).
基金Project supported by the National Natural Science Foundations of China(Grant Nos.62171401 and 62071411).
文摘Research on discrete memristor-based neural networks has received much attention.However,current research mainly focuses on memristor–based discrete homogeneous neuron networks,while memristor-coupled discrete heterogeneous neuron networks are rarely reported.In this study,a new four-stable discrete locally active memristor is proposed and its nonvolatile and locally active properties are verified by its power-off plot and DC V–I diagram.Based on two-dimensional(2D)discrete Izhikevich neuron and 2D discrete Chialvo neuron,a heterogeneous discrete neuron network is constructed by using the proposed discrete memristor as a coupling synapse connecting the two heterogeneous neurons.Considering the coupling strength as the control parameter,chaotic firing,periodic firing,and hyperchaotic firing patterns are revealed.In particular,multiple coexisting firing patterns are observed,which are induced by different initial values of the memristor.Phase synchronization between the two heterogeneous neurons is discussed and it is found that they can achieve perfect synchronous at large coupling strength.Furthermore,the effect of Gaussian white noise on synchronization behaviors is also explored.We demonstrate that the presence of noise not only leads to the transition of firing patterns,but also achieves the phase synchronization between two heterogeneous neurons under low coupling strength.