Objective: To investigate the effects of different concentrations of β-glucan on the repair of damaged vaginal mucosa, the expression of vascular endothelial growth factor (VEGF), and the inflammatory factor-6 (IL-6)...Objective: To investigate the effects of different concentrations of β-glucan on the repair of damaged vaginal mucosa, the expression of vascular endothelial growth factor (VEGF), and the inflammatory factor-6 (IL-6) in vaginal tissues. Methods: Thirty-six adult female specific pathogen free (SPF)-grade Wistar rats were randomly divided into 3 phase groups with 12 rats each. Vaginal inflammation rat models were established by injecting phenol gel into the vagina of each rat at a dose of 0.1 ml/100g body weight. After modeling, rats were divided into 4 groups based on different concentrations of the test agent. The control group was injected with 0.5 ml of saline, experimental group A was injected with 0.375 ml saline 0.125 ml β-glucan, experimental group B was injected with 0.25 ml saline 0.25 ml β-glucan, and experimental group C was injected with 0.50 ml β-glucan. The injection sites were selected at the 3 o’clock and 9 o’clock positions of the vagina. Rats were sacrificed at 7-, 14-, and 28-days post-injection, and tissue samples were collected from the injection sites and prepared for histological analysis. New blood vessels and fibroblast numbers in the tissues were observed after Hematoxylin-eosin (HE) staining. The expression levels of VEGF and IL-6 in the tissues were measured using quantificational reverse transcription polymerase chain reaction (qRT-PCR). Results: Histological examination of vaginal tissue specimens at 7-, 14-, and 28-days post-injection showed that on day 7, there were no significant changes in the experimental groups compared to the control group. However, on days 14 and 28, the experimental groups showed more new blood vessels, macrophages, and fibroblasts with increased activity compared to the control group. The expression levels of VEGF in vaginal tissues were elevated on days 14 and 28 in the experimental groups. The comparison of IL-6 levels in vaginal tissues on day 28 showed that serum IL-6 levels returned to normal, and there was no statistically significant difference between the experimental and control groups. Conclusion: In the 3 experimental phases, the increase in VEGF levels in vaginal tissues on day 14 post-injection was more pronounced with higher concentrations of β-glucan, and IL-6 levels returned to normal on day 28. β-Glucan can enhance VEGF levels in damaged vaginal tissues, promote the repair of damaged vaginal tissues, and higher concentrations of β-glucan have a better effect.展开更多
β-glucans are bioactive compounds with a wide range of biological properties, including anticancer, anti-inflammatory, antioxidant, and immune-modulating properties. Due to their specific physical properties, such as...β-glucans are bioactive compounds with a wide range of biological properties, including anticancer, anti-inflammatory, antioxidant, and immune-modulating properties. Due to their specific physical properties, such as (in)solubility, viscosity, and gelation, β-glucans are increasingly being used in the food, pharmaceutical, and cosmetic industries. The purpose of this review is to provide an overview of the different types of β-glucans, their sources, especially Saccharomyces cerevisiae yeasts, and the methods of extraction, isolation, and purification of β-glucans, with the aim of optimizing these methods for the efficient production process. Moreover, the physico-chemical properties, modifications, current applications and future prospects of the use of β-glucans in food, medicines, cosmetics and other potential value-added products are summarized. The data presented indicate that β-glucans will play an increasingly important role in the sector of special-purpose food products as well as in other current and future areas.展开更多
目的探讨(1-3)-β-D葡聚糖联合降钙素原(procalcitonin,PCT)、CD4^(+)T淋巴细胞多指标在艾滋病患者马尔尼菲篮状菌感染早期诊断临床研究。方法回顾性选取我院2020年1月—2022年6月住院的120例艾滋病患者为研究对象。依据实验室结果,将...目的探讨(1-3)-β-D葡聚糖联合降钙素原(procalcitonin,PCT)、CD4^(+)T淋巴细胞多指标在艾滋病患者马尔尼菲篮状菌感染早期诊断临床研究。方法回顾性选取我院2020年1月—2022年6月住院的120例艾滋病患者为研究对象。依据实验室结果,将其分为马尔尼菲篮状菌感染确诊组(血或组织液培育养出马尔尼菲篮状菌),简称A组(62例),及马尔尼菲篮状菌感染临床诊断组[根据临床症状、体征、血常规及(1-3)-β-D葡聚糖、PCT、CD4^(+)T淋巴细胞多指标诊断],简称B组(58例)。检测患者(1-3)-β-D葡聚糖、PCT、CD4^(+)T淋巴细胞的表达水平,采用受试者工作特征(receiver-operating characteristic,ROC)曲线下面积(area under the curve,AUC)评估上述指标联合检测对艾滋病患者感染马尔尼菲篮状菌的诊断效能。结果A组的(1-3)-β-D葡聚糖和PCT水平均高于B组,CD4^(+)T淋巴细胞个数低于B组(P<0.05);(1-3)-β-D葡聚糖、PCT、CD4^(+)T淋巴细胞联合检测的AUC为0.933,(1-3)-β-D葡聚糖单独检测的AUC是0.812,PCT单独检测的AUC为0.883,CD4^(+)T淋巴细胞单独检测的AUC是0.810,(1-3)-β-D葡聚糖、PCT和CD4^(+)T淋巴细胞联合检测的AUC皆优于三项单独检测,表明(1-3)-β-D葡聚糖、PCT和CD4^(+)T淋巴细胞联合检测的诊断价值皆优于单一指标诊断,且联合检测的特异度、约登指数分别为92.43%和0.580,均高于三项单独检测。结论(1-3)-β-D葡聚糖联合PCT和CD4^(+)T淋巴细胞多指标对艾滋病马尔尼菲篮状菌感染具有非常高的临床诊断价值,能够帮助医生分析出高危风险患者,及时制定治疗方案,同时也承担预后效果的判断依据,对治疗艾滋病马尔尼菲篮状菌感染具有非常重要的研究价值。展开更多
利用高通量SNP芯片对238份不同来源的大麦种质资源进行基因型分析,并测定2年的籽粒β-葡聚糖含量,通过基于PCA模型的一般线性模型(general linear model,GLM)进行全基因组关联分析(genome-wide association study,GWAS)。结果表明,238...利用高通量SNP芯片对238份不同来源的大麦种质资源进行基因型分析,并测定2年的籽粒β-葡聚糖含量,通过基于PCA模型的一般线性模型(general linear model,GLM)进行全基因组关联分析(genome-wide association study,GWAS)。结果表明,238份大麦材料的β-葡聚糖含量分布在1.23%~6.55%和1.79%~6.64%之间且均呈正态分布。GWAS分析共检测到19个显著的SNP标记,分布在1H、2H、3H、4H和5H染色体上,可解释表型变异的7.39%~10.29%。在显著关联的SNP位点上下游各300 kb范围内进行候选基因挖掘,共寻找到37个基因,基于前人研究和BLAST基因注释共筛选到4个最有可能与β-葡聚糖合成相关的候选基因,在最显著SNP位点B1_1033963上游89 kb处找到候选基因HORVU.MOREX.r3.1HG0000140,该基因可能是与β-葡聚糖合成过程紧密相关的基因。本研究可为大麦β-葡聚糖含量遗传改良提供理论指导与优异基因资源。展开更多
文摘Objective: To investigate the effects of different concentrations of β-glucan on the repair of damaged vaginal mucosa, the expression of vascular endothelial growth factor (VEGF), and the inflammatory factor-6 (IL-6) in vaginal tissues. Methods: Thirty-six adult female specific pathogen free (SPF)-grade Wistar rats were randomly divided into 3 phase groups with 12 rats each. Vaginal inflammation rat models were established by injecting phenol gel into the vagina of each rat at a dose of 0.1 ml/100g body weight. After modeling, rats were divided into 4 groups based on different concentrations of the test agent. The control group was injected with 0.5 ml of saline, experimental group A was injected with 0.375 ml saline 0.125 ml β-glucan, experimental group B was injected with 0.25 ml saline 0.25 ml β-glucan, and experimental group C was injected with 0.50 ml β-glucan. The injection sites were selected at the 3 o’clock and 9 o’clock positions of the vagina. Rats were sacrificed at 7-, 14-, and 28-days post-injection, and tissue samples were collected from the injection sites and prepared for histological analysis. New blood vessels and fibroblast numbers in the tissues were observed after Hematoxylin-eosin (HE) staining. The expression levels of VEGF and IL-6 in the tissues were measured using quantificational reverse transcription polymerase chain reaction (qRT-PCR). Results: Histological examination of vaginal tissue specimens at 7-, 14-, and 28-days post-injection showed that on day 7, there were no significant changes in the experimental groups compared to the control group. However, on days 14 and 28, the experimental groups showed more new blood vessels, macrophages, and fibroblasts with increased activity compared to the control group. The expression levels of VEGF in vaginal tissues were elevated on days 14 and 28 in the experimental groups. The comparison of IL-6 levels in vaginal tissues on day 28 showed that serum IL-6 levels returned to normal, and there was no statistically significant difference between the experimental and control groups. Conclusion: In the 3 experimental phases, the increase in VEGF levels in vaginal tissues on day 14 post-injection was more pronounced with higher concentrations of β-glucan, and IL-6 levels returned to normal on day 28. β-Glucan can enhance VEGF levels in damaged vaginal tissues, promote the repair of damaged vaginal tissues, and higher concentrations of β-glucan have a better effect.
文摘β-glucans are bioactive compounds with a wide range of biological properties, including anticancer, anti-inflammatory, antioxidant, and immune-modulating properties. Due to their specific physical properties, such as (in)solubility, viscosity, and gelation, β-glucans are increasingly being used in the food, pharmaceutical, and cosmetic industries. The purpose of this review is to provide an overview of the different types of β-glucans, their sources, especially Saccharomyces cerevisiae yeasts, and the methods of extraction, isolation, and purification of β-glucans, with the aim of optimizing these methods for the efficient production process. Moreover, the physico-chemical properties, modifications, current applications and future prospects of the use of β-glucans in food, medicines, cosmetics and other potential value-added products are summarized. The data presented indicate that β-glucans will play an increasingly important role in the sector of special-purpose food products as well as in other current and future areas.
文摘目的探讨(1-3)-β-D葡聚糖联合降钙素原(procalcitonin,PCT)、CD4^(+)T淋巴细胞多指标在艾滋病患者马尔尼菲篮状菌感染早期诊断临床研究。方法回顾性选取我院2020年1月—2022年6月住院的120例艾滋病患者为研究对象。依据实验室结果,将其分为马尔尼菲篮状菌感染确诊组(血或组织液培育养出马尔尼菲篮状菌),简称A组(62例),及马尔尼菲篮状菌感染临床诊断组[根据临床症状、体征、血常规及(1-3)-β-D葡聚糖、PCT、CD4^(+)T淋巴细胞多指标诊断],简称B组(58例)。检测患者(1-3)-β-D葡聚糖、PCT、CD4^(+)T淋巴细胞的表达水平,采用受试者工作特征(receiver-operating characteristic,ROC)曲线下面积(area under the curve,AUC)评估上述指标联合检测对艾滋病患者感染马尔尼菲篮状菌的诊断效能。结果A组的(1-3)-β-D葡聚糖和PCT水平均高于B组,CD4^(+)T淋巴细胞个数低于B组(P<0.05);(1-3)-β-D葡聚糖、PCT、CD4^(+)T淋巴细胞联合检测的AUC为0.933,(1-3)-β-D葡聚糖单独检测的AUC是0.812,PCT单独检测的AUC为0.883,CD4^(+)T淋巴细胞单独检测的AUC是0.810,(1-3)-β-D葡聚糖、PCT和CD4^(+)T淋巴细胞联合检测的AUC皆优于三项单独检测,表明(1-3)-β-D葡聚糖、PCT和CD4^(+)T淋巴细胞联合检测的诊断价值皆优于单一指标诊断,且联合检测的特异度、约登指数分别为92.43%和0.580,均高于三项单独检测。结论(1-3)-β-D葡聚糖联合PCT和CD4^(+)T淋巴细胞多指标对艾滋病马尔尼菲篮状菌感染具有非常高的临床诊断价值,能够帮助医生分析出高危风险患者,及时制定治疗方案,同时也承担预后效果的判断依据,对治疗艾滋病马尔尼菲篮状菌感染具有非常重要的研究价值。
文摘利用高通量SNP芯片对238份不同来源的大麦种质资源进行基因型分析,并测定2年的籽粒β-葡聚糖含量,通过基于PCA模型的一般线性模型(general linear model,GLM)进行全基因组关联分析(genome-wide association study,GWAS)。结果表明,238份大麦材料的β-葡聚糖含量分布在1.23%~6.55%和1.79%~6.64%之间且均呈正态分布。GWAS分析共检测到19个显著的SNP标记,分布在1H、2H、3H、4H和5H染色体上,可解释表型变异的7.39%~10.29%。在显著关联的SNP位点上下游各300 kb范围内进行候选基因挖掘,共寻找到37个基因,基于前人研究和BLAST基因注释共筛选到4个最有可能与β-葡聚糖合成相关的候选基因,在最显著SNP位点B1_1033963上游89 kb处找到候选基因HORVU.MOREX.r3.1HG0000140,该基因可能是与β-葡聚糖合成过程紧密相关的基因。本研究可为大麦β-葡聚糖含量遗传改良提供理论指导与优异基因资源。
文摘本文以76份青稞为研究对象,利用近红外光谱仪采集青稞4000~10000 cm-1波段光谱,并联合其水分、β-葡聚糖、直链淀粉、蛋白质实测含量数值,构建了基于近红外光谱技术的青稞特征营养成分含量快速检测模型。结果显示,SG卷积平滑(Savitzky Golay,SG)是水分、直链淀粉、β-葡聚糖含量的偏最小二乘法(Partial Least Squares,PLS)预测模型的最优光谱预处理方法,而SG卷积平滑+多元散射校正(Multiplicative Scatter Correction,MSC)是蛋白质含量的偏最小二乘法(PLS)预测模型的最优光谱预处理方法。为进一步提高青稞各成分含量预测模型的准确性,考察了竞争性自适应重加权法(Competitive Adaptive Reweighted Sampling,CARS)、连续投影算法(Successive Projections Algorithm,SPA)和变量组合集群分析混合迭代保留信息变量法(Variables Combination Population Analysis and Iterative Retained Information Variable,VCPA-IRIV)特征波长选择算法对模型预测结果的影响。结果表明,VCPA-IRIV处理可有效提高水分、直链淀粉、蛋白质含量预测模型的预测决定系数,降低预测均方根误差;CARS对β-葡聚糖含量预测模型优化效果显著。基于上述最优方法建立的青稞水分、β-葡聚糖、直链淀粉、蛋白质实测含量预测模型,其预测相关系数分别为0.9868、0.9808、0.9701、0.9879;预测均方根误差分别为0.2042、0.1846、0.8135、0.2095。综上,本研究建立的基于近红外光谱的青稞特征营养成分含量快速检测模型具有较高的准确性,对加工企业快速了解原料品质及高效筛选合格原料有一定指导意义。