In quorum sensing (QS) process, bacteria regulate gene expression by utilizing small signaling molecules called autoinducers in response to a variety of environmental cues. Autoinducer 2 (AI-2), a QS signaling mol...In quorum sensing (QS) process, bacteria regulate gene expression by utilizing small signaling molecules called autoinducers in response to a variety of environmental cues. Autoinducer 2 (AI-2), a QS signaling molecule proposed to be involved in interspecies communication, is produced by many species of gram-negative and gram-positive bacteria. In Escherichia coil and Salmonella typhimurium, the extracellular AI-2 is imported into the cell by a transporter encoded by the lsr operon. Upstream of the lsr operon, there is a divergently transcribed gene encoding LsrR, which was reported previously to repress the transcription of the lsr operon and itself. Here, we have demonstrated for the first time that LsrR represses the transcription of the lsr operon and itself by directly binding to their promoters using gel shift and DNase I footprinting assays. The β-galactosidase reporter assays further suggest that two motifs in both the lsrR and lsrA promoter regions are crucial for the LsrR binding. Furthermore, in agreement with the conclusion that phosphorylated AI-2 can relieve the repression of LsrR in previous studies, our data show that phospho- AI-2 renders LsrR unable to bind to its own promoter in vitro.展开更多
A total of 28 yeast strains were obtained from the sea sediment of Antarctica.According to the results of routine identi-fication and molecular characterization,the strains belonged to species of Yarrowia lipolytica,D...A total of 28 yeast strains were obtained from the sea sediment of Antarctica.According to the results of routine identi-fication and molecular characterization,the strains belonged to species of Yarrowia lipolytica,Debaryomyces hansenii,Rhodotorula slooffiae,Rhodotorula mucilaginosa,Sporidiobolus salmonicolor,Aureobasidium pullulans,Mrakia frigida and Guehomyces pullu-lans,respectively.The Antarctica yeasts have wide potential applications in biotechnology,for some of them can produce b-galactosidase and killer toxins.展开更多
Objectives To study the expression patterns of two Eph family molecules, the receptor EphA5, and the ligand ephrin-A5, during spinal cord development. Methods The receptor expression was analyzed using beta-galactosid...Objectives To study the expression patterns of two Eph family molecules, the receptor EphA5, and the ligand ephrin-A5, during spinal cord development. Methods The receptor expression was analyzed using beta-galactosidase knockin mice, and affinity ligand probe binding. The ligand expression was assessed using two different affinity probes, and knockout mouse tissues as controls. Results EphA5 was expressed in the ventral spinal cord, while ephrin-A5 was located in the dorsolateral regions of the spinal cord throughout development. Conclusions These results show that EphA5 and ephrin-A5 are expressed over broad developmental stages and may play important roles in establishing the dorsoventral organization of the spinal cord.展开更多
基金We thank our colleagues J Zang and X Liu for their technical assistance in protein purification. This work was supported by the One Hundred Talent Project of the Chinese Academy of Sciences and the National Natural Science Foundation of China (50738006).
文摘In quorum sensing (QS) process, bacteria regulate gene expression by utilizing small signaling molecules called autoinducers in response to a variety of environmental cues. Autoinducer 2 (AI-2), a QS signaling molecule proposed to be involved in interspecies communication, is produced by many species of gram-negative and gram-positive bacteria. In Escherichia coil and Salmonella typhimurium, the extracellular AI-2 is imported into the cell by a transporter encoded by the lsr operon. Upstream of the lsr operon, there is a divergently transcribed gene encoding LsrR, which was reported previously to repress the transcription of the lsr operon and itself. Here, we have demonstrated for the first time that LsrR represses the transcription of the lsr operon and itself by directly binding to their promoters using gel shift and DNase I footprinting assays. The β-galactosidase reporter assays further suggest that two motifs in both the lsrR and lsrA promoter regions are crucial for the LsrR binding. Furthermore, in agreement with the conclusion that phosphorylated AI-2 can relieve the repression of LsrR in previous studies, our data show that phospho- AI-2 renders LsrR unable to bind to its own promoter in vitro.
基金supported by the Hi-Tech Researchand Development Program of China(863),the grant No. is 2006AA09Z403
文摘A total of 28 yeast strains were obtained from the sea sediment of Antarctica.According to the results of routine identi-fication and molecular characterization,the strains belonged to species of Yarrowia lipolytica,Debaryomyces hansenii,Rhodotorula slooffiae,Rhodotorula mucilaginosa,Sporidiobolus salmonicolor,Aureobasidium pullulans,Mrakia frigida and Guehomyces pullu-lans,respectively.The Antarctica yeasts have wide potential applications in biotechnology,for some of them can produce b-galactosidase and killer toxins.
基金This work was supported in part by grants from New Jersey Commission on Spinal Cord Research and the National Science Foundation (No. 0548561,USA).
文摘Objectives To study the expression patterns of two Eph family molecules, the receptor EphA5, and the ligand ephrin-A5, during spinal cord development. Methods The receptor expression was analyzed using beta-galactosidase knockin mice, and affinity ligand probe binding. The ligand expression was assessed using two different affinity probes, and knockout mouse tissues as controls. Results EphA5 was expressed in the ventral spinal cord, while ephrin-A5 was located in the dorsolateral regions of the spinal cord throughout development. Conclusions These results show that EphA5 and ephrin-A5 are expressed over broad developmental stages and may play important roles in establishing the dorsoventral organization of the spinal cord.