In this paper, we study an important class of (α,β)-metrics in the form F = (α + β)m+1/αm on an n-dimensional manifold and get the conditions for such metrics to be weakly-Berwald metrics, where α = aij(x)yiyj i...In this paper, we study an important class of (α,β)-metrics in the form F = (α + β)m+1/αm on an n-dimensional manifold and get the conditions for such metrics to be weakly-Berwald metrics, where α = aij(x)yiyj is a Riemannian metric and β = bi(x)yi is a 1-form and m is a real number with m = 1,0,1/n. Furthermore, we also prove that this kind of (α,β)-metrics is of isotropic mean Berwald curvature if and only if it is of isotropic S-curvature. In this case, S-curvature vanishes and the metric is weakly-Berwald metric.展开更多
In this paper, minimal submanifolds in Finsler spaces with (α, β)-metrics are studied. Especially, helicoids are also minimal in (α, β)-Minkowski spaces. Then the minimal surfaces of conoid in Finsler spaces with ...In this paper, minimal submanifolds in Finsler spaces with (α, β)-metrics are studied. Especially, helicoids are also minimal in (α, β)-Minkowski spaces. Then the minimal surfaces of conoid in Finsler spaces with (α, β)-metrics are given. Last, the Gauss curvature of the conoid in the 3-dimension Randers-Minkowski space is studied.展开更多
Projective change between two Finsler metrics arises from Information Geom-etry. Such metrics have special geometric properties and will play an important role in Finsler geometry. The purpose of the present paper is ...Projective change between two Finsler metrics arises from Information Geom-etry. Such metrics have special geometric properties and will play an important role in Finsler geometry. The purpose of the present paper is to find a relation to characterize the projective change between generalized (α, β) - metric ( μ1, μ2 and μ3 ≠ 0 are constants) and Randers metric , where α and are two Riemannian metrics, β and are 1-forms. Further, we study such projective change when generalized (α, β) -metric F has some curvature property.展开更多
Abstract In this article, the author studies the projectively flat Matsumoto metric F=α^2/(α -β), where α=√αijy^iy^j is a Riemannian metric and β =biy^i is 1-form. Theyconclude that α is locally projectively...Abstract In this article, the author studies the projectively flat Matsumoto metric F=α^2/(α -β), where α=√αijy^iy^j is a Riemannian metric and β =biy^i is 1-form. Theyconclude that α is locally projectively fiat and β is paralled with respect to α. And get the same result for the higher order approximate Matsumoto metric.展开更多
In this paper, we study a class of Finsler metric in the form F=αexp(β/α)+εβ, where α is a Riemannian metric and β is a 1-form, ε is a constant. We call F exponential Finsler metric. We proved that exponential...In this paper, we study a class of Finsler metric in the form F=αexp(β/α)+εβ, where α is a Riemannian metric and β is a 1-form, ε is a constant. We call F exponential Finsler metric. We proved that exponential Finsler metric F is locally projectively flat if and only if α is projectively flat and β is parallel with respect to α. Moreover, we proved that the Douglas tensor of expo-nential Finsler metric F vanishes if and only if β is parallel with respect to α. And from this fact, we get that if exponential Finsler metric F is the Douglas metric, then F is not only a Berwald metric, but also a Landsberg metric.展开更多
In this work, we study a class of special Finsler metrics F called arctangent Finsler metric, which is a special (α, β)-metric, where a is a Riemannian metric and β is a 1-form, We obtain a sufficient and necessa...In this work, we study a class of special Finsler metrics F called arctangent Finsler metric, which is a special (α, β)-metric, where a is a Riemannian metric and β is a 1-form, We obtain a sufficient and necessary condition that F is locally projectively fiat if and only if α and β satisfy two special equations. Furthermore we give the non-trivial solutions for F to be locally projectively fiat. Moreover, we prove that such projectively fiat Finsler metrics with constant flag curvature must be locally Minkowskian.展开更多
In this article, we study a class of Finsler metrics called general (α, β)-metrics, which are defined by a Riemannian metric α and a 1-form β. We determine all of Douglas general (α, β)-metrics on a manifold...In this article, we study a class of Finsler metrics called general (α, β)-metrics, which are defined by a Riemannian metric α and a 1-form β. We determine all of Douglas general (α, β)-metrics on a manifold of dimension n 〉 2.展开更多
基金the National Natural Science Foundation of China (No. 10671214) the Natural Science Foundation of Chongqing Education Committee (No. KJ080620) the Science Foundation of Chongqing University of Arts and Sciences (No. Z2008SJ14).
文摘In this paper, we study an important class of (α,β)-metrics in the form F = (α + β)m+1/αm on an n-dimensional manifold and get the conditions for such metrics to be weakly-Berwald metrics, where α = aij(x)yiyj is a Riemannian metric and β = bi(x)yi is a 1-form and m is a real number with m = 1,0,1/n. Furthermore, we also prove that this kind of (α,β)-metrics is of isotropic mean Berwald curvature if and only if it is of isotropic S-curvature. In this case, S-curvature vanishes and the metric is weakly-Berwald metric.
文摘In this paper, minimal submanifolds in Finsler spaces with (α, β)-metrics are studied. Especially, helicoids are also minimal in (α, β)-Minkowski spaces. Then the minimal surfaces of conoid in Finsler spaces with (α, β)-metrics are given. Last, the Gauss curvature of the conoid in the 3-dimension Randers-Minkowski space is studied.
文摘Projective change between two Finsler metrics arises from Information Geom-etry. Such metrics have special geometric properties and will play an important role in Finsler geometry. The purpose of the present paper is to find a relation to characterize the projective change between generalized (α, β) - metric ( μ1, μ2 and μ3 ≠ 0 are constants) and Randers metric , where α and are two Riemannian metrics, β and are 1-forms. Further, we study such projective change when generalized (α, β) -metric F has some curvature property.
文摘Abstract In this article, the author studies the projectively flat Matsumoto metric F=α^2/(α -β), where α=√αijy^iy^j is a Riemannian metric and β =biy^i is 1-form. Theyconclude that α is locally projectively fiat and β is paralled with respect to α. And get the same result for the higher order approximate Matsumoto metric.
基金Project (No. 10571154) supported by the National Natural ScienceFoundation of China
文摘In this paper, we study a class of Finsler metric in the form F=αexp(β/α)+εβ, where α is a Riemannian metric and β is a 1-form, ε is a constant. We call F exponential Finsler metric. We proved that exponential Finsler metric F is locally projectively flat if and only if α is projectively flat and β is parallel with respect to α. Moreover, we proved that the Douglas tensor of expo-nential Finsler metric F vanishes if and only if β is parallel with respect to α. And from this fact, we get that if exponential Finsler metric F is the Douglas metric, then F is not only a Berwald metric, but also a Landsberg metric.
基金Project (No. 10571154) supported by the National Natural Science Foundation of China
文摘In this work, we study a class of special Finsler metrics F called arctangent Finsler metric, which is a special (α, β)-metric, where a is a Riemannian metric and β is a 1-form, We obtain a sufficient and necessary condition that F is locally projectively fiat if and only if α and β satisfy two special equations. Furthermore we give the non-trivial solutions for F to be locally projectively fiat. Moreover, we prove that such projectively fiat Finsler metrics with constant flag curvature must be locally Minkowskian.
基金supported by the National Natural Science Foundation of China(11626091)Youth Science Fund of Henan Normal University(2015QK01)a doctoral scientific research foundation of Henan Normal University(5101019170130)
文摘In this article, we study a class of Finsler metrics called general (α, β)-metrics, which are defined by a Riemannian metric α and a 1-form β. We determine all of Douglas general (α, β)-metrics on a manifold of dimension n 〉 2.