The transformation behavior of Ni Ti Nb based alloys was analysed.The absence of R phase transformation in these alloys is related to the stress field in the NiTi matrix.The thermal mismatch stress was calculated by...The transformation behavior of Ni Ti Nb based alloys was analysed.The absence of R phase transformation in these alloys is related to the stress field in the NiTi matrix.The thermal mismatch stress was calculated by the Eshelby method in Ni Ti Nb alloys.The results show that the mean matrix elastic stress field is isostatic tensile,there is no preferred stress in [111] B 2 direction.The mean matrix stress from the thermal misfit between NiTi matrix and β Nb particle is too small to induce dislocations.All the factors tend to inhibit R phase transformation.展开更多
In order to study the effect of element Nb on the microstructure and properties of the biomedical β-type Ti-Mo based alloys,Ti-15Mo-xNb(x=5,10,15 and 20 in %) alloys were investigated.The dry wear resistance of β-...In order to study the effect of element Nb on the microstructure and properties of the biomedical β-type Ti-Mo based alloys,Ti-15Mo-xNb(x=5,10,15 and 20 in %) alloys were investigated.The dry wear resistance of β-type Ti-15Mo-xNb alloys against Gr15 ball was investigated on CJS111A ball-disk wear instrument.Experimental results indicate that crystal structure and morphology of the Ti-15Mo-xNb alloys are sensitive to their Nb contents.Ti-15Mo-xNb alloys match those for β phase peaks and no any phases are found.The Vickers hardness values of all the Ti-15Mo-xNb alloys are higher than HV200.The compression yield strength of the Ti-15Mo-5Nb alloy is the lowest and that of the Ti-15Mo-10Nb alloy is the highest.For all the Ti-15Mo-xNb alloys,the friction coefficient is not constant but takes a higher value.In dry condition,SEM study reveals deep parallel scars on the wear surfaces of all the Ti-15Mo-xNb alloys under different loads.The friction coefficient of the Ti-15Mo-5Nb alloy under 1 N is the lowest.The wear principal mechanism for Ti-15Mo-xNb alloys is adhesive wear.展开更多
To develop novel β-type biomedical titanium alloys,a series of Ti-15Mo-xNb alloys(x=0,5,10 and 15,mass fraction in%) were designed and prepared by using vacuum arc melting method.The present study focused on the ef...To develop novel β-type biomedical titanium alloys,a series of Ti-15Mo-xNb alloys(x=0,5,10 and 15,mass fraction in%) were designed and prepared by using vacuum arc melting method.The present study focused on the effect of Nb addition on the microstructure,mechanical properties and castability of Ti-15 Mo alloy.Phase analysis and microstructure observation show that all the alloys consist of single β phase and the equiaxed β grain is refined with increasing Nb content.These β-type Ti-15Mo-xNb alloys exhibit good plasticity and rather low compression elastic modulus(in the range of 18.388-19.365 GPa).After Nb addition,the compression yield strength of the alloys increases.With increasing Nb content,the micro-hardness of the alloys decreases.The alloys exhibit obvious fibrous strip microstructure after cold compression deformation.The castability test shows that the castability of the alloys after Nb addition decreases and that of the Ti-15 Mo alloy is the highest(92.01%).展开更多
Study was made of the behaviour of ordering transformation in Ti_3AI-Nb alloy,including the ordering at high temperatures,the transformation of high temperature β-phase during cooling,and the decomposition of metasta...Study was made of the behaviour of ordering transformation in Ti_3AI-Nb alloy,including the ordering at high temperatures,the transformation of high temperature β-phase during cooling,and the decomposition of metastable β-phase during aging.The results show that the ordered primary α_2 and high temperature β in alloy form at 1060℃.The transformation of high temperature β-phase proceed by β→α_2+ω type during cooling,and the decomposition of metastable β and ω type proceeded by(β+ω)_(metustabte)→(α_2+β)_(stable)during aging at 700℃.展开更多
文摘The transformation behavior of Ni Ti Nb based alloys was analysed.The absence of R phase transformation in these alloys is related to the stress field in the NiTi matrix.The thermal mismatch stress was calculated by the Eshelby method in Ni Ti Nb alloys.The results show that the mean matrix elastic stress field is isostatic tensile,there is no preferred stress in [111] B 2 direction.The mean matrix stress from the thermal misfit between NiTi matrix and β Nb particle is too small to induce dislocations.All the factors tend to inhibit R phase transformation.
基金Project(20080440850) supported by China Postdoctoral Science FoundationProject(ZJY0605-02) supported by the Natural Science Foundation of Heilongjiang Province,ChinaProject(HIT.NSRIF.2012002) supported by the Fundamental Research Funds for the Central Universities,China
文摘In order to study the effect of element Nb on the microstructure and properties of the biomedical β-type Ti-Mo based alloys,Ti-15Mo-xNb(x=5,10,15 and 20 in %) alloys were investigated.The dry wear resistance of β-type Ti-15Mo-xNb alloys against Gr15 ball was investigated on CJS111A ball-disk wear instrument.Experimental results indicate that crystal structure and morphology of the Ti-15Mo-xNb alloys are sensitive to their Nb contents.Ti-15Mo-xNb alloys match those for β phase peaks and no any phases are found.The Vickers hardness values of all the Ti-15Mo-xNb alloys are higher than HV200.The compression yield strength of the Ti-15Mo-5Nb alloy is the lowest and that of the Ti-15Mo-10Nb alloy is the highest.For all the Ti-15Mo-xNb alloys,the friction coefficient is not constant but takes a higher value.In dry condition,SEM study reveals deep parallel scars on the wear surfaces of all the Ti-15Mo-xNb alloys under different loads.The friction coefficient of the Ti-15Mo-5Nb alloy under 1 N is the lowest.The wear principal mechanism for Ti-15Mo-xNb alloys is adhesive wear.
基金Project(QN2010-04)supported by the Youth Startup Fund of the Second Affiliated Hospital of Harbin Medical University,ChinaProject(2010-156)supported by the Medical Scientific Research Foundation of Heilongjiang Province Health Department,ChinaProject(HIT.NSRIF.2012002)supported by the Fundamental Research Funds for the Central Universities,China
文摘To develop novel β-type biomedical titanium alloys,a series of Ti-15Mo-xNb alloys(x=0,5,10 and 15,mass fraction in%) were designed and prepared by using vacuum arc melting method.The present study focused on the effect of Nb addition on the microstructure,mechanical properties and castability of Ti-15 Mo alloy.Phase analysis and microstructure observation show that all the alloys consist of single β phase and the equiaxed β grain is refined with increasing Nb content.These β-type Ti-15Mo-xNb alloys exhibit good plasticity and rather low compression elastic modulus(in the range of 18.388-19.365 GPa).After Nb addition,the compression yield strength of the alloys increases.With increasing Nb content,the micro-hardness of the alloys decreases.The alloys exhibit obvious fibrous strip microstructure after cold compression deformation.The castability test shows that the castability of the alloys after Nb addition decreases and that of the Ti-15 Mo alloy is the highest(92.01%).
文摘Study was made of the behaviour of ordering transformation in Ti_3AI-Nb alloy,including the ordering at high temperatures,the transformation of high temperature β-phase during cooling,and the decomposition of metastable β-phase during aging.The results show that the ordered primary α_2 and high temperature β in alloy form at 1060℃.The transformation of high temperature β-phase proceed by β→α_2+ω type during cooling,and the decomposition of metastable β and ω type proceeded by(β+ω)_(metustabte)→(α_2+β)_(stable)during aging at 700℃.