The effect of twist angle on the hydrogenation of bilayer graphene (BLG) is systematically explored by density functional theory (DFT) calculations. We found that a twist between the upper and lower layers of the ...The effect of twist angle on the hydrogenation of bilayer graphene (BLG) is systematically explored by density functional theory (DFT) calculations. We found that a twist between the upper and lower layers of the graphene BLGs, either big or small, interferes with the formation of inter-layer C-C covalent bonds and this leads to strong resistance to hydrogenation. In addition, the electronic properties of stable, hydrogenated twisted BLG with different twist angles and degrees of H coverage were investigated. This study paves the way to the selective functionalization of BLG for various applications.展开更多
文摘The effect of twist angle on the hydrogenation of bilayer graphene (BLG) is systematically explored by density functional theory (DFT) calculations. We found that a twist between the upper and lower layers of the graphene BLGs, either big or small, interferes with the formation of inter-layer C-C covalent bonds and this leads to strong resistance to hydrogenation. In addition, the electronic properties of stable, hydrogenated twisted BLG with different twist angles and degrees of H coverage were investigated. This study paves the way to the selective functionalization of BLG for various applications.