Y2O3: Er^3+, Yb^3+ nanoparticles were synthesized by a homogeneous precipitation method without and with different concentrations of EDTA 2Na. Upconversion luminescence spectra of the samples were studied under 980...Y2O3: Er^3+, Yb^3+ nanoparticles were synthesized by a homogeneous precipitation method without and with different concentrations of EDTA 2Na. Upconversion luminescence spectra of the samples were studied under 980 nm laser excitation. The results of XRD showed that the obtained Y2O3:Er^3+,Yb^3+ nanoparticles were of a cubic structure. The average crystallite sizes calculated were in the range of 28-40 nm. Green and red upconversion emission were observed, and attributed to ^2H11/2,^4S3/2→^4I15/2 and ^4F9/2→^4I15/2 transitions of the ion, respectively. The ratio of the intensity of green emission to that of red emission drastically changed with a change in the EDTA 2Na concentration. In the sample synthesized without EDTA, the relative intensity of the green emission was weaker than that of the red emission. The relative intensities of green emission increased with the increased amount of EDTA 2Na used. The possible upconversion luminescence mechanisms were discussed.展开更多
Mesoporous superacids S2O82–-Fe2O3/SBA-15(SFS)with active nanoparticles are prepared by ultrasonic adsorption method.This method is adopted to ensure a homo-dispersed nanoparticle active phase,large specific surface ...Mesoporous superacids S2O82–-Fe2O3/SBA-15(SFS)with active nanoparticles are prepared by ultrasonic adsorption method.This method is adopted to ensure a homo-dispersed nanoparticle active phase,large specific surface area and many acidic sites.Compared with bulk S2O82–-Fe2O3,Br?nsted acid catalysts and other reported catalysts,SFS with an Fe2O3 loading of 30%(SFS-30)exhibits an outstanding activity in the probe reaction of alcoholysis of styrene oxide by methanol with 100%yield.Moreover,SFS-30 also shows a more excellent catalytic performance than bulk S2O82–-Fe2O3 towards the alcoholysis of other ROHs(R=C2H5-C4H9).Lewis and Bronsted acid sites on the SFS-30 surfaces are confirmed by pyridine adsorbed infrared spectra.The highly efficient catalytic activity of SFS-30 may be attributed to the synergistic effect from the nano-effect of S2O82–-Fe2O3 nanoparticles and the mesostructure of SBA-15.Finally,SFS-30 shows a good catalytic reusability,providing an 84.1%yield after seven catalytic cycles.展开更多
Fe3O4 magnetic nanoparticles(MNPs) were synthesised, characterised, and used as a peroxidase mimetic to accelerate levofloxacin sono-degradation in an ultrasound(US)/H2O2 system. The Fe3O4 MNPs were in nanometre scale...Fe3O4 magnetic nanoparticles(MNPs) were synthesised, characterised, and used as a peroxidase mimetic to accelerate levofloxacin sono-degradation in an ultrasound(US)/H2O2 system. The Fe3O4 MNPs were in nanometre scale with an average diameter of approximately 12 to 18 nm. The introduction of Fe3O4 MNPs increased levofloxacin sono-degradation in the US/H2O2 system. Experimental parameters, such as Fe3O4 MNP dose, initial solution p H, and H2O2 concentration, were investigated by a one-factor-at-a-time approach. The results showed that Fe3O4 MNPs enhanced levofloxacin removal in the p H range from 4.0 to 9.0. Levofloxacin removal ratio increased with Fe3O4 MNP dose up to 1.0 g·L-1and with H2O2 concentration until reaching the maximum. Moreover, three main intermediate compounds were identified by HPLC with electrospray ionisation tandem mass spectrometry, and a possible degradation pathway was proposed. This study suggests that combination of H2O2, Fe3O4 MNPs and US is a good way to improve the degradation efficiency of antibiotics.展开更多
In recent decades, many additives with different characteristics have been applied to strengthen and toughen Al2O3-based ceramic cutting tool materials. Among them, SiC whiskers and SiC nanoparticles showed excellent ...In recent decades, many additives with different characteristics have been applied to strengthen and toughen Al2O3-based ceramic cutting tool materials. Among them, SiC whiskers and SiC nanoparticles showed excellent performance in improving the material properties. While no attempts have been made to add SiC whiskers and SiC nanoparticles together into the ceramic matrix and the synergistically toughening effects of them have not been studied. An Al2O3-SiCw-SiC np advanced ceramic cutting tool material is fabricated by adding both one-dimensional SiC whiskers and zero-dimensional SiC nanoparticles into the Al2O3 matrix with an effective dispersing and mixing process. The composites with 25 vol% SiC whiskers and 25 vol% SiC nanoparticles alone are also investegated for comparison purposes. Results show that the Al2O3-SiCw-SiCnp composite with both 20 vo1% SiC whiskers and 5 vol% SiC nanoparticles additives have much improved mechanical properties. The flexural strength of Al2O3-SiCw-SiCnp is 730+ 95 MPa and fracture toughness is 5.6 ± 0.6 MPa.m1/2. The toughening and strengthening mechanisms of SiC whiskers and nanoparticles are studied when they are added either individually or in combination. It is indicated that when SiC whiskers and nanoparticles are added together, the grains are further refined and homogenized, so that the microstructure and fracture mode ratio is modified. The SiC nanoparticles are found helpful to enhance the toughening effects of the SiC whiskers. The proposed research helps to enrich the types of ceramic cutting tool and is benefit to expand the application range of ceramic cutting tool.展开更多
Eu-doped GaOOH nanoparticles with size of 5-8 nm were prepared by hydrothermal method using sodium dodecylbenzene sulfonate (SDBS) as surfactant. Eu-doped α-Ga2O3 and β-Ga2O3 were further fabricated by annealing G...Eu-doped GaOOH nanoparticles with size of 5-8 nm were prepared by hydrothermal method using sodium dodecylbenzene sulfonate (SDBS) as surfactant. Eu-doped α-Ga2O3 and β-Ga2O3 were further fabricated by annealing GaOOH:Eu and then characterized by X-ray diffraction(XRD), transmission electron microscopy (TEM) and photoluminescence (PL). The TEM results show that monodisperse Eu^3+-doped GaOOH nanoparticles form and then transform into Eu^3+-doped a-Ga2O3 and β-Ga2O3 through annealing the GaOOH:Eu nanoparticles at 600 and 900℃, respectively. PL studies indicate that GaOOH:Eu has the highest intensity at 618 nm. Luminescence quenching is observed at higher Eu3+concentration in all samples.展开更多
The Fe3O4@SiO2 composite nanoparticles were obtained from as-synthesized magnetite (Fe3O4) nanoparticles through the modified St?ber method. Then, the Fe3O4 nanoparticles and Fe3O4@SiO2 composite nanoparticles were ch...The Fe3O4@SiO2 composite nanoparticles were obtained from as-synthesized magnetite (Fe3O4) nanoparticles through the modified St?ber method. Then, the Fe3O4 nanoparticles and Fe3O4@SiO2 composite nanoparticles were characterized by means of X-ray diffraction (XRD), Raman spectra, scanning electron microscope (SEM) and vibrating sample magnetometer (VSM). Recently, the studies focus on how to improve the dispersion of composite particle and achieve good magnetic performance. Hence effects of the volume ratio of tetraethyl orthosilicate (TEOS) and magnetite colloid on the structural, morphological and magnetic properties of the composite nanoparticles were systematically investi-gated. The results revealed that the Fe3O4@SiO2 had better thermal stability and dispersion than the magnetite nanoparticles. Furthermore, the particle size and magnetic property of the Fe3O4@SiO2 composite nanoparticles can be adjusted by changing the volume ratio of TEOS and magnetite colloid.展开更多
Highly pure active γ-Al2O3 nanoparticles were synthesized from aluminum nitrate and ammonium carbonate with a little surfactant by chemical precipitation method. The factors affecting the synthesis process were studi...Highly pure active γ-Al2O3 nanoparticles were synthesized from aluminum nitrate and ammonium carbonate with a little surfactant by chemical precipitation method. The factors affecting the synthesis process were studied. The properties of γ-Al2O3 nanoparticles were characterized by DTA, XRD, BET, TEM, laser granularity analysis and impurity content analysis. The results show that the amorphous precursor AI(OH)3 sols are produced by using 0.1 mol/L Al(NO3)3·9H2O and 0.16 mol/L (NH4)2CO3·H2O reaction solutions, according to the volume ratio 1.33, adding 0.024%(volume fraction) surfactant PEG600, and reacting at 40℃, 1000 r/min stirring rate for 15min. Then, after stabilizing for 24 h, the precursors were extracted and filtrated by vacuum, washed thoroughly with deionized water and dehydrated ethanol, dried in vacuum at 80℃ for 8h, final calcined at 800℃ for 1h in the air, and high purity active γ-Al2O3 nanoparticles can be prepared with cubic in crystal system, OH^7-FD3M in space group, about 9 nm in crystal grain size, about 20 nm in particle size and uniform size distribution, 131.35 m^2/g in BET specific surface area, 7 - 11 nm in pore diameter, and not lower than 99.93% in purity.展开更多
A method of heating ethanol-aqueous salt solution combined with co-precipitation was used to synthesize Al2O3/ZrO2 nanoparticles. The analysis of DSC and XRD revealed that the transformation temperature from amorphous...A method of heating ethanol-aqueous salt solution combined with co-precipitation was used to synthesize Al2O3/ZrO2 nanoparticles. The analysis of DSC and XRD revealed that the transformation temperature from amorphous to crystal phase was about 850 ℃. The grain size was increased with the raising of calcine temperature. The alcohol-water ratio did not affect the formation of main crystal phases, but affected the agglomeration of nanoparticles based on the results of TEM. When alcohol-water ratio was 5∶1, the dispersion of nanoparticles was good. When there was not alcohol, the dispersion of nanoparticles was poor because there was only pure co-precipitation reaction and the speed of co-precipitation reaction was too high to have enough time of PEG. dispersing particles.展开更多
Porous cube-like crystalline In2O3 nanoparticles with an average diagonal length of 34.8 nm were fabricated by a laser ablation-reflux process to form In(OH)3, followed by a calcination treatment to yield porous In2...Porous cube-like crystalline In2O3 nanoparticles with an average diagonal length of 34.8 nm were fabricated by a laser ablation-reflux process to form In(OH)3, followed by a calcination treatment to yield porous In2O3. HRTEM (high-resolution transmission electronic microscopy), XRD (X-ray diffraction), BET (Brunauer-Emmett-Teller), and XPS (X-ray photoelectron spectroscopy) analysis were used to characterize their crystalline structures, grain sizes, surface areas, and surface compositions. The as-prepared porous in-dium oxides were tested for their sensing properties toward ethanol. Non-porous In2O3 nanopowder (about 40 nm) was also examined in order to compare the results with the as-prepared porous In2O3 nanomaterials. The porous In2O3 exhibited much better performance than that of non-porosus In2O3, and showed enhanced sensitivity with a lower detection limit than other reported In2O3-based materials when exposed to ethanol. Good gas sensitivity and linear behavior as a function of ethanol concentration were observed in the porous In2O3 nanoparticles.展开更多
The film forming behavior on the interface between air and hydrosol of Fe2O3 nanoparticles was investigated by the surface pressure-time isotherms, the surface pressure-trough area isotherms, Brewster angle microscopy...The film forming behavior on the interface between air and hydrosol of Fe2O3 nanoparticles was investigated by the surface pressure-time isotherms, the surface pressure-trough area isotherms, Brewster angle microscopy and transmission electron microscopy. It is found that the freshly prepared hydrosol of Fe2O3 nanoparticles is not stable. The surface pressure increases with the aging time and finally approaches a constant, and the smaller the concentration is, the smaller the surface pressure is stabilized at and the shorter the time the hydrosol reaching stable needs. The surface pressure also increases with compression until collapsed, and the longer the hydrosol is aged, the higher the collapsing pressure is. A uniform and compact film composed of nanoparticles with an average diameter of about 2-3 nm on the air-hydrosol interface is observed by Brewster angle microscope and transmission electron microscope.展开更多
To investigate the upconversion emission, this paper synthesizes Tm^3+ and Yb^3+ codoped Y2O3 nanoparticles, and then coats them with TiO2 shells for different coating times. The spectral results of TiO2 coated nano...To investigate the upconversion emission, this paper synthesizes Tm^3+ and Yb^3+ codoped Y2O3 nanoparticles, and then coats them with TiO2 shells for different coating times. The spectral results of TiO2 coated nanoparticles indicate that upconversion emission intensities have respectively been enhanced 3.2, 5.4, and 2.2 times for coating times of 30, 60 and 90 min at an excitation power density of 3.21× 10^2 W. cm^-2, in comparison with the emission intensity of non-coated nanoparticles. Therefore it can be concluded that the intense upconversion emission of Y2O3:Tm^3+, Yb^3+ nanoparticles can be achieved by coating the particle surfaces with a shell of specific thickness.展开更多
The properties of La 2O 3 doped molybdenum powder were studied. The La 2O 3 nanoparticles on the surface of molybdenum powder which is produced by the reduction of La(NO 3) 3 doped MoO 2 in hydrogen decrease the inten...The properties of La 2O 3 doped molybdenum powder were studied. The La 2O 3 nanoparticles on the surface of molybdenum powder which is produced by the reduction of La(NO 3) 3 doped MoO 2 in hydrogen decrease the intensity of feature energy loss peak of molybdenum substrate; but increase that of peak of Mo?3d. The surface of molybdenum powder exposed to the atmosphere can be reduced because the surface is mainly covered with La 2O 3 nanoparticles. As a result, the capability of anti oxidation of molybdenum is improved.展开更多
Y2O3 nanoparticles prepared in microemulsion, which were sprayed on cut tobacco, can reduce tar in cigarettes effectively. Reducing the content of tar in many brands of cigarettes was studied. The results show that Y2...Y2O3 nanoparticles prepared in microemulsion, which were sprayed on cut tobacco, can reduce tar in cigarettes effectively. Reducing the content of tar in many brands of cigarettes was studied. The results show that Y2O3 nanoparticles can reduce tar in cigarettes effectively and have no influence on nicotine when the addition of Y2O3 nanoparticles is 0,5-1.2%. The smaller the grain size of Y2O3 nanoparticles is,the more effective tar reduction is. The principle of reducing tar in cigarettes is studied preliminarily.展开更多
Precursor foam based Co incorporated α-Fe<sub>2</sub>O<sub>3</sub> (AFC) was successfully synthesized at 600℃ calcination temperature by simple solution method using PVA. The formation of α-...Precursor foam based Co incorporated α-Fe<sub>2</sub>O<sub>3</sub> (AFC) was successfully synthesized at 600℃ calcination temperature by simple solution method using PVA. The formation of α-Fe<sub>2</sub>O<sub>3</sub> nanoparticles was confirmed by X-ray diffraction measurement and reduction in crystallite size was found after cobalt incorporation. Field emission scanning electron microscopy revealed the existence of pyramidal shaped iron oxide in AFC. FTIR and Raman spectra also confirmed the presence of α-Fe<sub>2</sub>O<sub>3</sub>. Photocatalytic activity study showed that the cobalt incorporated α-Fe<sub>2</sub>O<sub>3</sub> was better photocatalyst than pure α-Fe<sub>2</sub>O<sub>3</sub>. The cobalt incorporated iron oxide nanoparticles could be used for drug delivery application and this simple preparation method could be adopted for the synthesis of other transition metal oxides.展开更多
In this study,Ag/γ-Al_(2)O_(3)catalysts were synthesized by an Ar dielectric barrier discharge plasma using silver nitrate as the Ag source andγ-alumina(γ-Al_(2)O_(3))as the support.It is revealed that plasma can r...In this study,Ag/γ-Al_(2)O_(3)catalysts were synthesized by an Ar dielectric barrier discharge plasma using silver nitrate as the Ag source andγ-alumina(γ-Al_(2)O_(3))as the support.It is revealed that plasma can reduce silver ions to generate crystalline silver nanoparticles(Ag NPs)of good dispersion and uniformity on the alumina surface,leading to the formation of Ag/γ-Al_(2)O_(3)catalysts in a green manner without traditional chemical reductants.Ag/γ-Al_(2)O_(3)exhibited good catalytic activity and stability in CO oxidation reactions,and the activity increased with increase in the Ag content.For catalysts with more than 2 wt%Ag,100%CO conversion can be achieved at 300°C.The catalytic activity of the Ag/γ-Al_(2)O_(3)catalysts is also closely related to the size of theγ-alumina,where Ag/nano-γ-Al_(2)O_(3)catalysts demonstrate better performance than Ag/micro-γ-Al_(2)O_(3)catalysts with the same Ag content.In addition,the catalytic properties of plasma-generated Ag/nano-γ-Al_(2)O_(3)(Ag/γ-Al_(2)O_(3)-P)catalysts were compared with those of Ag/nano-γ-Al_(2)O_(3)catalysts prepared by the traditional calcination approach(Ag/γ-Al_(2)O_(3)-C),with the plasma-generated samples demonstrating better overall performance.This simple,rapid and green plasma process is considered to be applicable for the synthesis of diverse noble metal-based catalysts.展开更多
Using density functional theory,noncovalent interactions and four mechanisms of covalent functionalization of capecitabine anticancer drug onto γ-Fe2O3 nanoparticles have been investigated.Quantum molecular descripto...Using density functional theory,noncovalent interactions and four mechanisms of covalent functionalization of capecitabine anticancer drug onto γ-Fe2O3 nanoparticles have been investigated.Quantum molecular descriptors of noncovalent configurations were studied.It was specified that binding of capecitabine onto γ-Fe2O3 nanoparticles is thermodynamically suitable.Hardness and the gap of energy between LUMO and HOMO of capecitabine are higher than the noncovalent configurations,showing the reactivity of capecitabine increases in the presence of γ-Fe2O3 nanoparticles.Capecitabine can bond to γ-Fe2O3 nanoparticles through OH(k1 mechanism),NH(k2 mechanism),CO(k3 mechanism) and F(k4 mechanism) groups.The activation energies,activation enthalpies and activation Gibbs free energies of these reactions were calculated.It was specified that the k1 and k2 mechanisms are under thermodynamic control and k3 and k4 under kinetic control.These results could be generalized to other similar drugs.展开更多
D-Aminoacid oxidase (DAO) was isolated from fresh porcine kidney;its cytotoxic potential was studied under in vitro and in vivo conditions. The isolated DAO was complexed with Fe2O3 nanoparticles and its potential as ...D-Aminoacid oxidase (DAO) was isolated from fresh porcine kidney;its cytotoxic potential was studied under in vitro and in vivo conditions. The isolated DAO was complexed with Fe2O3 nanoparticles and its potential as an oxidation therapeutic agent was analysed. The ability of the complex in eliciting H2O2 mediated cytotoxicity was studied on Dalton’s lymphoma ascites cells (DLA). The induction of apoptosis in DLA cells by Fe2O3-DAO complex was studied by morphological examination and alkaline single cell gel electrophoresis (comet assay). The antitumor activity of the complex was investigated by oral administration of the complex and the substrate D-alanine to tumor bearing Swiss albino mice and by targeting the complex to the tumor site, using an externally applied magnetic field. Fe2O3-DAO along with D-alanine showed remarkable cytotoxicity in a substrate concentration-dependent manner. Both morphological examination and comet assay revealed that Fe2O3-DAO/D-alanine induced apoptosis. Oral administration of Fe2O3-DAO and D-alanine along with magnetic targeting significantly suppressed tumor growth in mice. The present report provides the first evidence for the promising application of enzyme bound nanoparticles for targeted oxidation therapy.展开更多
Sb 2 O 3 nanoparticles were prepared via hydrolyze reaction of SbCl 3 in water - ethanol solution,and were char - acterized by XRD and TEM.In addition,the effect of reactive condition on particle size was also investi...Sb 2 O 3 nanoparticles were prepared via hydrolyze reaction of SbCl 3 in water - ethanol solution,and were char - acterized by XRD and TEM.In addition,the effect of reactive condition on particle size was also investigated systematically.When the sample modified by coupling agent was applied in formulation of plastic,the mechanical property and flame retardancy was better than micron sample.展开更多
Ni-Y2O3 nanocomposite powder with uniform distribution of fine oxide particles in the metal matrix was successfully fabricated via solution combustion process followed by hydrogen reduction. The combustion behavior wa...Ni-Y2O3 nanocomposite powder with uniform distribution of fine oxide particles in the metal matrix was successfully fabricated via solution combustion process followed by hydrogen reduction. The combustion behavior was investigated by DTA-TG analysis. The influence of urea to nickel nitrate(U/Ni) ratio on the combustion behavior and morphology evolution of the combusted powder was investigated. The morphological characteristics and phase transformation of the combusted powder and the reduced powder were characterized by FESEM, TEM and XRD. The HRTEM image of Ni-Y2O3 nanocomposite powder indicated that Y2O3 particles with average particle size of about 10 nm dispersed uniformly in the nickel matrix.展开更多
基金the Foundation for the University by Educational Department of Liaoning (05L337)Key Laboratory of Rare Earth Chemistry and Physics, Chinese Academy of Sciences
文摘Y2O3: Er^3+, Yb^3+ nanoparticles were synthesized by a homogeneous precipitation method without and with different concentrations of EDTA 2Na. Upconversion luminescence spectra of the samples were studied under 980 nm laser excitation. The results of XRD showed that the obtained Y2O3:Er^3+,Yb^3+ nanoparticles were of a cubic structure. The average crystallite sizes calculated were in the range of 28-40 nm. Green and red upconversion emission were observed, and attributed to ^2H11/2,^4S3/2→^4I15/2 and ^4F9/2→^4I15/2 transitions of the ion, respectively. The ratio of the intensity of green emission to that of red emission drastically changed with a change in the EDTA 2Na concentration. In the sample synthesized without EDTA, the relative intensity of the green emission was weaker than that of the red emission. The relative intensities of green emission increased with the increased amount of EDTA 2Na used. The possible upconversion luminescence mechanisms were discussed.
文摘Mesoporous superacids S2O82–-Fe2O3/SBA-15(SFS)with active nanoparticles are prepared by ultrasonic adsorption method.This method is adopted to ensure a homo-dispersed nanoparticle active phase,large specific surface area and many acidic sites.Compared with bulk S2O82–-Fe2O3,Br?nsted acid catalysts and other reported catalysts,SFS with an Fe2O3 loading of 30%(SFS-30)exhibits an outstanding activity in the probe reaction of alcoholysis of styrene oxide by methanol with 100%yield.Moreover,SFS-30 also shows a more excellent catalytic performance than bulk S2O82–-Fe2O3 towards the alcoholysis of other ROHs(R=C2H5-C4H9).Lewis and Bronsted acid sites on the SFS-30 surfaces are confirmed by pyridine adsorbed infrared spectra.The highly efficient catalytic activity of SFS-30 may be attributed to the synergistic effect from the nano-effect of S2O82–-Fe2O3 nanoparticles and the mesostructure of SBA-15.Finally,SFS-30 shows a good catalytic reusability,providing an 84.1%yield after seven catalytic cycles.
基金Supported by the National Natural Science Foundation of China(51009115)Shaanxi Provincial Department of Education Key Laboratory Project(13JS067)+2 种基金the Hall of Shaanxi Province Science and Technology(2013JK0881)the Research Plan Project of Water Resources Department of Shaanxi Province(2013slkj-07)the Innovation of Science and Technology Fund of Xi'an University of Technology(211302)
文摘Fe3O4 magnetic nanoparticles(MNPs) were synthesised, characterised, and used as a peroxidase mimetic to accelerate levofloxacin sono-degradation in an ultrasound(US)/H2O2 system. The Fe3O4 MNPs were in nanometre scale with an average diameter of approximately 12 to 18 nm. The introduction of Fe3O4 MNPs increased levofloxacin sono-degradation in the US/H2O2 system. Experimental parameters, such as Fe3O4 MNP dose, initial solution p H, and H2O2 concentration, were investigated by a one-factor-at-a-time approach. The results showed that Fe3O4 MNPs enhanced levofloxacin removal in the p H range from 4.0 to 9.0. Levofloxacin removal ratio increased with Fe3O4 MNP dose up to 1.0 g·L-1and with H2O2 concentration until reaching the maximum. Moreover, three main intermediate compounds were identified by HPLC with electrospray ionisation tandem mass spectrometry, and a possible degradation pathway was proposed. This study suggests that combination of H2O2, Fe3O4 MNPs and US is a good way to improve the degradation efficiency of antibiotics.
基金Supported by National Natural Science Foundation of China(Grant No.51175305)
文摘In recent decades, many additives with different characteristics have been applied to strengthen and toughen Al2O3-based ceramic cutting tool materials. Among them, SiC whiskers and SiC nanoparticles showed excellent performance in improving the material properties. While no attempts have been made to add SiC whiskers and SiC nanoparticles together into the ceramic matrix and the synergistically toughening effects of them have not been studied. An Al2O3-SiCw-SiC np advanced ceramic cutting tool material is fabricated by adding both one-dimensional SiC whiskers and zero-dimensional SiC nanoparticles into the Al2O3 matrix with an effective dispersing and mixing process. The composites with 25 vol% SiC whiskers and 25 vol% SiC nanoparticles alone are also investegated for comparison purposes. Results show that the Al2O3-SiCw-SiCnp composite with both 20 vo1% SiC whiskers and 5 vol% SiC nanoparticles additives have much improved mechanical properties. The flexural strength of Al2O3-SiCw-SiCnp is 730+ 95 MPa and fracture toughness is 5.6 ± 0.6 MPa.m1/2. The toughening and strengthening mechanisms of SiC whiskers and nanoparticles are studied when they are added either individually or in combination. It is indicated that when SiC whiskers and nanoparticles are added together, the grains are further refined and homogenized, so that the microstructure and fracture mode ratio is modified. The SiC nanoparticles are found helpful to enhance the toughening effects of the SiC whiskers. The proposed research helps to enrich the types of ceramic cutting tool and is benefit to expand the application range of ceramic cutting tool.
基金Project(50772133) supported by the National Natural Science Foundation of ChinaProject(LA 09014) supported by Innovation Projects for Graduates of Center South University,China
文摘Eu-doped GaOOH nanoparticles with size of 5-8 nm were prepared by hydrothermal method using sodium dodecylbenzene sulfonate (SDBS) as surfactant. Eu-doped α-Ga2O3 and β-Ga2O3 were further fabricated by annealing GaOOH:Eu and then characterized by X-ray diffraction(XRD), transmission electron microscopy (TEM) and photoluminescence (PL). The TEM results show that monodisperse Eu^3+-doped GaOOH nanoparticles form and then transform into Eu^3+-doped a-Ga2O3 and β-Ga2O3 through annealing the GaOOH:Eu nanoparticles at 600 and 900℃, respectively. PL studies indicate that GaOOH:Eu has the highest intensity at 618 nm. Luminescence quenching is observed at higher Eu3+concentration in all samples.
文摘The Fe3O4@SiO2 composite nanoparticles were obtained from as-synthesized magnetite (Fe3O4) nanoparticles through the modified St?ber method. Then, the Fe3O4 nanoparticles and Fe3O4@SiO2 composite nanoparticles were characterized by means of X-ray diffraction (XRD), Raman spectra, scanning electron microscope (SEM) and vibrating sample magnetometer (VSM). Recently, the studies focus on how to improve the dispersion of composite particle and achieve good magnetic performance. Hence effects of the volume ratio of tetraethyl orthosilicate (TEOS) and magnetite colloid on the structural, morphological and magnetic properties of the composite nanoparticles were systematically investi-gated. The results revealed that the Fe3O4@SiO2 had better thermal stability and dispersion than the magnetite nanoparticles. Furthermore, the particle size and magnetic property of the Fe3O4@SiO2 composite nanoparticles can be adjusted by changing the volume ratio of TEOS and magnetite colloid.
文摘Highly pure active γ-Al2O3 nanoparticles were synthesized from aluminum nitrate and ammonium carbonate with a little surfactant by chemical precipitation method. The factors affecting the synthesis process were studied. The properties of γ-Al2O3 nanoparticles were characterized by DTA, XRD, BET, TEM, laser granularity analysis and impurity content analysis. The results show that the amorphous precursor AI(OH)3 sols are produced by using 0.1 mol/L Al(NO3)3·9H2O and 0.16 mol/L (NH4)2CO3·H2O reaction solutions, according to the volume ratio 1.33, adding 0.024%(volume fraction) surfactant PEG600, and reacting at 40℃, 1000 r/min stirring rate for 15min. Then, after stabilizing for 24 h, the precursors were extracted and filtrated by vacuum, washed thoroughly with deionized water and dehydrated ethanol, dried in vacuum at 80℃ for 8h, final calcined at 800℃ for 1h in the air, and high purity active γ-Al2O3 nanoparticles can be prepared with cubic in crystal system, OH^7-FD3M in space group, about 9 nm in crystal grain size, about 20 nm in particle size and uniform size distribution, 131.35 m^2/g in BET specific surface area, 7 - 11 nm in pore diameter, and not lower than 99.93% in purity.
基金The authors acknowledges the financial support of Tianjin University Youth FoundationTangshan Ceramics Limited
文摘A method of heating ethanol-aqueous salt solution combined with co-precipitation was used to synthesize Al2O3/ZrO2 nanoparticles. The analysis of DSC and XRD revealed that the transformation temperature from amorphous to crystal phase was about 850 ℃. The grain size was increased with the raising of calcine temperature. The alcohol-water ratio did not affect the formation of main crystal phases, but affected the agglomeration of nanoparticles based on the results of TEM. When alcohol-water ratio was 5∶1, the dispersion of nanoparticles was good. When there was not alcohol, the dispersion of nanoparticles was poor because there was only pure co-precipitation reaction and the speed of co-precipitation reaction was too high to have enough time of PEG. dispersing particles.
基金the National Science Council of Taiwan for financially supporting this work.
文摘Porous cube-like crystalline In2O3 nanoparticles with an average diagonal length of 34.8 nm were fabricated by a laser ablation-reflux process to form In(OH)3, followed by a calcination treatment to yield porous In2O3. HRTEM (high-resolution transmission electronic microscopy), XRD (X-ray diffraction), BET (Brunauer-Emmett-Teller), and XPS (X-ray photoelectron spectroscopy) analysis were used to characterize their crystalline structures, grain sizes, surface areas, and surface compositions. The as-prepared porous in-dium oxides were tested for their sensing properties toward ethanol. Non-porous In2O3 nanopowder (about 40 nm) was also examined in order to compare the results with the as-prepared porous In2O3 nanomaterials. The porous In2O3 exhibited much better performance than that of non-porosus In2O3, and showed enhanced sensitivity with a lower detection limit than other reported In2O3-based materials when exposed to ethanol. Good gas sensitivity and linear behavior as a function of ethanol concentration were observed in the porous In2O3 nanoparticles.
基金Funded by the National Natural Science Foundation of China (50672089)the Encouraging Foundation for the Scientific Research of the Excellent Young and Middleaged Scientists in Shandong Province(2006BS04034)
文摘The film forming behavior on the interface between air and hydrosol of Fe2O3 nanoparticles was investigated by the surface pressure-time isotherms, the surface pressure-trough area isotherms, Brewster angle microscopy and transmission electron microscopy. It is found that the freshly prepared hydrosol of Fe2O3 nanoparticles is not stable. The surface pressure increases with the aging time and finally approaches a constant, and the smaller the concentration is, the smaller the surface pressure is stabilized at and the shorter the time the hydrosol reaching stable needs. The surface pressure also increases with compression until collapsed, and the longer the hydrosol is aged, the higher the collapsing pressure is. A uniform and compact film composed of nanoparticles with an average diameter of about 2-3 nm on the air-hydrosol interface is observed by Brewster angle microscope and transmission electron microscope.
文摘To investigate the upconversion emission, this paper synthesizes Tm^3+ and Yb^3+ codoped Y2O3 nanoparticles, and then coats them with TiO2 shells for different coating times. The spectral results of TiO2 coated nanoparticles indicate that upconversion emission intensities have respectively been enhanced 3.2, 5.4, and 2.2 times for coating times of 30, 60 and 90 min at an excitation power density of 3.21× 10^2 W. cm^-2, in comparison with the emission intensity of non-coated nanoparticles. Therefore it can be concluded that the intense upconversion emission of Y2O3:Tm^3+, Yb^3+ nanoparticles can be achieved by coating the particle surfaces with a shell of specific thickness.
文摘The properties of La 2O 3 doped molybdenum powder were studied. The La 2O 3 nanoparticles on the surface of molybdenum powder which is produced by the reduction of La(NO 3) 3 doped MoO 2 in hydrogen decrease the intensity of feature energy loss peak of molybdenum substrate; but increase that of peak of Mo?3d. The surface of molybdenum powder exposed to the atmosphere can be reduced because the surface is mainly covered with La 2O 3 nanoparticles. As a result, the capability of anti oxidation of molybdenum is improved.
文摘Y2O3 nanoparticles prepared in microemulsion, which were sprayed on cut tobacco, can reduce tar in cigarettes effectively. Reducing the content of tar in many brands of cigarettes was studied. The results show that Y2O3 nanoparticles can reduce tar in cigarettes effectively and have no influence on nicotine when the addition of Y2O3 nanoparticles is 0,5-1.2%. The smaller the grain size of Y2O3 nanoparticles is,the more effective tar reduction is. The principle of reducing tar in cigarettes is studied preliminarily.
文摘Precursor foam based Co incorporated α-Fe<sub>2</sub>O<sub>3</sub> (AFC) was successfully synthesized at 600℃ calcination temperature by simple solution method using PVA. The formation of α-Fe<sub>2</sub>O<sub>3</sub> nanoparticles was confirmed by X-ray diffraction measurement and reduction in crystallite size was found after cobalt incorporation. Field emission scanning electron microscopy revealed the existence of pyramidal shaped iron oxide in AFC. FTIR and Raman spectra also confirmed the presence of α-Fe<sub>2</sub>O<sub>3</sub>. Photocatalytic activity study showed that the cobalt incorporated α-Fe<sub>2</sub>O<sub>3</sub> was better photocatalyst than pure α-Fe<sub>2</sub>O<sub>3</sub>. The cobalt incorporated iron oxide nanoparticles could be used for drug delivery application and this simple preparation method could be adopted for the synthesis of other transition metal oxides.
基金financial support from National Natural Science Foundation of China(Nos.52004102 and 22078125)Postdoctoral Science Foundation of China(No.2021M690068)+2 种基金Fundamental Research Funds for the Central Universities(Nos.JUSRP221018 and JUSRP622038)Key Laboratory of Green Cleaning Technology and Detergent of Zhejiang Province(No.Q202204)Open Project of Key Laboratory of Green Chemical Engineering Process of Ministry of Education(No.GCP202112)。
文摘In this study,Ag/γ-Al_(2)O_(3)catalysts were synthesized by an Ar dielectric barrier discharge plasma using silver nitrate as the Ag source andγ-alumina(γ-Al_(2)O_(3))as the support.It is revealed that plasma can reduce silver ions to generate crystalline silver nanoparticles(Ag NPs)of good dispersion and uniformity on the alumina surface,leading to the formation of Ag/γ-Al_(2)O_(3)catalysts in a green manner without traditional chemical reductants.Ag/γ-Al_(2)O_(3)exhibited good catalytic activity and stability in CO oxidation reactions,and the activity increased with increase in the Ag content.For catalysts with more than 2 wt%Ag,100%CO conversion can be achieved at 300°C.The catalytic activity of the Ag/γ-Al_(2)O_(3)catalysts is also closely related to the size of theγ-alumina,where Ag/nano-γ-Al_(2)O_(3)catalysts demonstrate better performance than Ag/micro-γ-Al_(2)O_(3)catalysts with the same Ag content.In addition,the catalytic properties of plasma-generated Ag/nano-γ-Al_(2)O_(3)(Ag/γ-Al_(2)O_(3)-P)catalysts were compared with those of Ag/nano-γ-Al_(2)O_(3)catalysts prepared by the traditional calcination approach(Ag/γ-Al_(2)O_(3)-C),with the plasma-generated samples demonstrating better overall performance.This simple,rapid and green plasma process is considered to be applicable for the synthesis of diverse noble metal-based catalysts.
文摘Using density functional theory,noncovalent interactions and four mechanisms of covalent functionalization of capecitabine anticancer drug onto γ-Fe2O3 nanoparticles have been investigated.Quantum molecular descriptors of noncovalent configurations were studied.It was specified that binding of capecitabine onto γ-Fe2O3 nanoparticles is thermodynamically suitable.Hardness and the gap of energy between LUMO and HOMO of capecitabine are higher than the noncovalent configurations,showing the reactivity of capecitabine increases in the presence of γ-Fe2O3 nanoparticles.Capecitabine can bond to γ-Fe2O3 nanoparticles through OH(k1 mechanism),NH(k2 mechanism),CO(k3 mechanism) and F(k4 mechanism) groups.The activation energies,activation enthalpies and activation Gibbs free energies of these reactions were calculated.It was specified that the k1 and k2 mechanisms are under thermodynamic control and k3 and k4 under kinetic control.These results could be generalized to other similar drugs.
文摘D-Aminoacid oxidase (DAO) was isolated from fresh porcine kidney;its cytotoxic potential was studied under in vitro and in vivo conditions. The isolated DAO was complexed with Fe2O3 nanoparticles and its potential as an oxidation therapeutic agent was analysed. The ability of the complex in eliciting H2O2 mediated cytotoxicity was studied on Dalton’s lymphoma ascites cells (DLA). The induction of apoptosis in DLA cells by Fe2O3-DAO complex was studied by morphological examination and alkaline single cell gel electrophoresis (comet assay). The antitumor activity of the complex was investigated by oral administration of the complex and the substrate D-alanine to tumor bearing Swiss albino mice and by targeting the complex to the tumor site, using an externally applied magnetic field. Fe2O3-DAO along with D-alanine showed remarkable cytotoxicity in a substrate concentration-dependent manner. Both morphological examination and comet assay revealed that Fe2O3-DAO/D-alanine induced apoptosis. Oral administration of Fe2O3-DAO and D-alanine along with magnetic targeting significantly suppressed tumor growth in mice. The present report provides the first evidence for the promising application of enzyme bound nanoparticles for targeted oxidation therapy.
文摘Sb 2 O 3 nanoparticles were prepared via hydrolyze reaction of SbCl 3 in water - ethanol solution,and were char - acterized by XRD and TEM.In addition,the effect of reactive condition on particle size was also investigated systematically.When the sample modified by coupling agent was applied in formulation of plastic,the mechanical property and flame retardancy was better than micron sample.
基金Project(2132046)supported by the Beijing Natural Science Foundation,ChinaProject(51104007)supported by the National Natural Science Foundation of China
文摘Ni-Y2O3 nanocomposite powder with uniform distribution of fine oxide particles in the metal matrix was successfully fabricated via solution combustion process followed by hydrogen reduction. The combustion behavior was investigated by DTA-TG analysis. The influence of urea to nickel nitrate(U/Ni) ratio on the combustion behavior and morphology evolution of the combusted powder was investigated. The morphological characteristics and phase transformation of the combusted powder and the reduced powder were characterized by FESEM, TEM and XRD. The HRTEM image of Ni-Y2O3 nanocomposite powder indicated that Y2O3 particles with average particle size of about 10 nm dispersed uniformly in the nickel matrix.