Different morphologies of β-FeOOH were prepared by hydrothermal synthesis using NaH2PO4 as structural modifier. The rod-shaped, straw-like and flower-like products could be controllably obtained. The as-obtained prod...Different morphologies of β-FeOOH were prepared by hydrothermal synthesis using NaH2PO4 as structural modifier. The rod-shaped, straw-like and flower-like products could be controllably obtained. The as-obtained products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Ultraviolet-visible (UV-Vis) absorption spectroscopy. The experimental results show that the morphology manipulation could be achieved by adding different amounts of NaH2PO4. XRD pattern indicates that the as-prepared sample is the pure tetragonal phase of β-FeOOH. UV-Vis absorption spectra of the products are affected by their morphologies, which shows that both the rod-shaped and straw-like β-FeOOH have outstanding absorption ability on the whole UV area (200-400 nm), which will have vast application prospects in UV protection.展开更多
基金Funded by the International Scientific and Technological Cooperation Project(2011DFR50200)
文摘Different morphologies of β-FeOOH were prepared by hydrothermal synthesis using NaH2PO4 as structural modifier. The rod-shaped, straw-like and flower-like products could be controllably obtained. The as-obtained products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Ultraviolet-visible (UV-Vis) absorption spectroscopy. The experimental results show that the morphology manipulation could be achieved by adding different amounts of NaH2PO4. XRD pattern indicates that the as-prepared sample is the pure tetragonal phase of β-FeOOH. UV-Vis absorption spectra of the products are affected by their morphologies, which shows that both the rod-shaped and straw-like β-FeOOH have outstanding absorption ability on the whole UV area (200-400 nm), which will have vast application prospects in UV protection.