We report the magnetotransport and thermal properties of RuAs_(2) single crystal.RuAs_(2) exhibits semiconductor behavior and localization effect.The crossover from normal state to diffusive transport in the weak loca...We report the magnetotransport and thermal properties of RuAs_(2) single crystal.RuAs_(2) exhibits semiconductor behavior and localization effect.The crossover from normal state to diffusive transport in the weak localization(WL)state and then to variable range hopping(VRH)transport in the strong localization state has been observed.The transitions can be reflected in the measurement of resistivity and Seebeck coefficient.Negative magnetoresistance(NMR)emerges with the appearance of localization effect and is gradually suppressed in high magnetic field.The temperature dependent phase coherence length extracted from the fittings of NMR also indicates the transition from WL to VRH.The measurement of Hall effect reveals an anomaly of temperature dependent carrier concentration caused by localization effect.Our findings show that RuAs_(2) is a suitable platform to study the localized state.展开更多
To understand the anisotropy dependence of the damage evolution and material removal during the machining process of MgF_(2) single crystals,nanoscratch tests of MgF_(2) single crystals with different crystal planes a...To understand the anisotropy dependence of the damage evolution and material removal during the machining process of MgF_(2) single crystals,nanoscratch tests of MgF_(2) single crystals with different crystal planes and directions were systematically performed,and surface morphologies of the scratched grooves under different conditions were analyzed.The experimental results indicated that anisotropy considerably affected the damage evolution in the machining process of MgF_(2) single crystals.A stress field model induced by the scratch was developed by considering the anisotropy,which indicated that during the loading process,median cracks induced by the tensile stress initiated and propagated at the front of the indenter.Lateral cracks induced by tensile stress initiated and propagated on the subsurface during the unloading process.In addition,surface radial cracks induced by the tensile stress were easily generated during the unloading process.The stress change led to the deflection of the propagation direction of lateral cracks.Therefore,the lateral cracks propagated to the workpiece surface,resulting in brittle removal in the form of chunk chips.The plastic deformation parameter indicated that the more the slip systems were activated,the more easily the plastic deformation occurred.The cleavage fracture parameter indicated that the cracks propagated along the activated cleavage planes,and the brittle chunk removal was owing to the subsurface cleavage cracks propagating to the crystal surface.Under the same processing parameters,the scratch of the(001)crystal plane along the[100]crystal-orientation was found to be the most conducive to achieving plastic machining of MgF_(2) single crystals.The theoretical results agreed well with the experimental results,which will not only enhance the understanding of the anisotropy dependence of the damage evolution and removal process during the machining of MgF_(2) crystals,but also provide a theoretical foundation for achieving the high-efficiency and low-damage processing of anisotropic single crystals.展开更多
Low-dimensional halide perovskites have become the most promising candidates for X-ray imaging,yet the issues of the poor chemical stability of hybrid halide perovskite,the high poisonousness of lead halides and the r...Low-dimensional halide perovskites have become the most promising candidates for X-ray imaging,yet the issues of the poor chemical stability of hybrid halide perovskite,the high poisonousness of lead halides and the relatively low detectivity of the lead-free halide perovskites which seriously restrain its commercialization.Here,we developed a solution inverse temperature crystal growth(ITCG)method to bring-up high quality Cs_(3)Cu_(2)I_(5)crystals with large size of centimeter order,in which the oleic acid(OA)is introduced as an antioxidative ligand to inhibit the oxidation of cuprous ions effieiently,as well as to decelerate the crystallization rate remarkalby.Based on these fine crystals,the vapor deposition technique is empolyed to prepare high quality Cs_(3)Cu_(2)I_(5)films for efficient X-ray imaging.Smooth surface morphology,high light yields and short decay time endow the Cs_(3)Cu_(2)I_(5)films with strong radioluminescence,high resolution(12 lp/mm),low detection limits(53 nGyair/s)and desirable stability.Subsequently,the Cs_(3)Cu_(2)I_(5)films have been applied to the practical radiography which exhibit superior X-ray imaging performance.Our work provides a paradigm to fabricate nonpoisonous and chemically stable inorganic halide perovskite for X-ray imaging.展开更多
We report a systematic investigation on c-axis point-contact Andreev reflection (PCAR) in BaFe2-xNixAs2 superconducting single crystals from underdoped to overdoped regions (0.075≤ x ≤0.15). At low temperatures,...We report a systematic investigation on c-axis point-contact Andreev reflection (PCAR) in BaFe2-xNixAs2 superconducting single crystals from underdoped to overdoped regions (0.075≤ x ≤0.15). At low temperatures, an in-gap sharp peak at low-bias voltage is observed in PCAR for overdoped samples, in contrast to the case of underdoped junctions, in which an in-gap plateau is observed. The variety of the conductance spectra with doping can be well described by using a generalized Blonder-Tinkham-Klapwijk formalism with an angle-dependent gap. This gap shows a clear crossover from a nodeless in the underdoped side to a nodal feature in the overdoped region. This result provides evidence of the doping-induced evolution of the superconducting order parameter when the inter-pocket and intra-pocket scattering are tuned through doping, as expected in the s± scenario.展开更多
Single crystals of undoped CaFe2As2 are grown by an FeAs self-flux method, and the crystals are quenched in ice-water rapidly after high-temperature growth. The quenched crystal undergoes a collapsed tetragonal struct...Single crystals of undoped CaFe2As2 are grown by an FeAs self-flux method, and the crystals are quenched in ice-water rapidly after high-temperature growth. The quenched crystal undergoes a collapsed tetragonal structural phase transition around 80 K revealed by the temperature-dependent x-ray diffraction measurements. Superconductivity below 25 K is observed in the collapsed phase by resistivity and magnetization measurements. The isothermal magnetization curve measured at 2 K indicates that this is a typical type-ll superconductor. For comparison, we systematically characterize the properties of the furnace-cooled, quenched, and post-annealed single crystals, and find strong internal crystallographic strain existing in the quenched samples, which is the key for the occurrence of superconductivity in the undoped CaFe2As2 single crystals.展开更多
Single crystals of undoped and nickel-doped BaFe2-xNixAs2 (x = 0, 0.04) have been grown by FeAs self-flux method. The maximum dimension of the crystal is as large as - 1 cm along ab plane. The crystalline topography...Single crystals of undoped and nickel-doped BaFe2-xNixAs2 (x = 0, 0.04) have been grown by FeAs self-flux method. The maximum dimension of the crystal is as large as - 1 cm along ab plane. The crystalline topography of a cleaved crystal surface is examined by scanning electron microscope (SEM). By x-ray powder diffraction (XRD) experiments using pure silicon as an internal standard, precise unit cell parameters (tetragonal at room temperature) are determined: a = 3.9606(4) A^°. (1 A^°=0.1 nm), c = 13.015(2) A^°. for BaFe1.96Ni0.04As2 and a = 3.9590(5) A^°, c = 13.024(1) A^°for BaFe2As2. DC magnetization and transport measurements are performed to check superconducting transition (Tc = 15 K for x = 0.04) and other subtle anomalies. For BaFe1.96Ni0.04As2 crystal, the resistance curve at normal state shows two distinct anomalies associated with spin and structure transitions, and its magnetization data above - 91 K exhibit a linear temperature dependence due to spin density wave (SDW) instability.展开更多
We report a reproducible approach in preparing high-quality overdoped Bi2 Sr2 CaCu2 08+δ (Bi2212) single crystals by annealing Bi2212 crystals in high oxygen pressure followed by a fast quenching. In this way, hig...We report a reproducible approach in preparing high-quality overdoped Bi2 Sr2 CaCu2 08+δ (Bi2212) single crystals by annealing Bi2212 crystals in high oxygen pressure followed by a fast quenching. In this way, high-quality overdoped and heavily overdoped Bi2212 single crystals are obtained by controlling the annealing oxygen pressure. We find that, beyond a limit of oxygen pressure that can achieve most heavily overdoped Bi2212 with a Tc N63 K, the annealed Bi2212 begins to decompose. This accounts for the existence of the hole-doping limit and thus the Tc limit in the heavily overdoped region of Bi2212 by the oxygen annealing process. These results provide a reliable way in preparing high-quality overdoped and heavily overdoped Bi2212 crystals that are important for studies of the physical properties, electronic structure and superconductivity mechanism of the cuprate superconductors.展开更多
The transmittance (T) and the reflectance (R) were measured for (TMA)2ZnCl4 single crystals and hence the absorption coefficient (α), extinction coefficient (Kex.), refractive index (n), real and im-aginary dielectri...The transmittance (T) and the reflectance (R) were measured for (TMA)2ZnCl4 single crystals and hence the absorption coefficient (α), extinction coefficient (Kex.), refractive index (n), real and im-aginary dielectric constants (ε', ε") of (TMA)2ZnCl4 crystals were calculated as a function of photon energy. The analysis of the spectra behavior of the absorption coefficient in the absorption region revealed indirect transition. The dispersion of the refractive index is discussed in terms of the sin-gle oscillator Wemple-DiDomenico model. The single oscillator energy (E0), the dispersion energy (Ed), the lattice dielectric constant (εL) and the ratio of free charge carrier concentration to the ef-fective mass (N/m*) were estimated. The FTIR spectra were recorded to study the functional groups of the as grown and annealed samples.展开更多
Exploring low-cost and highly active photocatalysts is very urgent to accomplish complete removal of phenolic contaminants and overcome the limitations of the existing photocatalysts.In this study,we designed and synt...Exploring low-cost and highly active photocatalysts is very urgent to accomplish complete removal of phenolic contaminants and overcome the limitations of the existing photocatalysts.In this study,we designed and synthesized noble metal-free TiO2 photocatalysts by introducing bismuth nanoparticles as modifiers of a TiO2 single crystal(Bi-SCTiO2).The Bi-SCTiO2 can make full use of the synergistic effect of a small band overlap and low charge carrier density(Bi)with a high conductivity(single crystal),significantly boosting the separation and migration of the photogenerated charge pairs.Therefore,the Bi-SCTiO2 photocatalyst exhibits a significantly enhanced degradation rate(12 times faster)of 4-nitrophenol than a TiO2 single crystal under simulated sunlight irradiation.Notably,the complete removal of phenolic contaminants is achieved in various water matrices,which not only successfully overcomes the incomplete degradation in many reported photocatalytic systems,but also manifests a significant practical potential for sewage disposal.Therefore,this work presents a new insight in designing and constructing noble metal-free decorated semiconductor single-crystal photocatalysts with excellent activity and cyclability.展开更多
We report on the single crystal growth and superconducting properties of PbTaSe2 with the non-centrosymmetric crystal structure. By using the chemicM vapor transport technique, centimeter-size single crystals are succ...We report on the single crystal growth and superconducting properties of PbTaSe2 with the non-centrosymmetric crystal structure. By using the chemicM vapor transport technique, centimeter-size single crystals are success- fully obtained. The measurement of temperature dependence of electricaJ resistivity p(T) in both normal and superconducting states indicates a quasi-two-dimensional electronic state in contrast to that of polycrystalline samples. Specific heat C(T) measurement reveals a bulk superconductivity with Tc ≈ 3.75K and a specific heat jump ratio of 1.42. All these results are in agreement with a moderately electron-phonon coupled, type-g Bardeen-Cooper-Schrieffer superconductor.展开更多
It is challenging to balance the cyclability and rate capability of single crystal nickel-rich cathode materials(Ni>0.8).Multicomponent oxides by spray pyrolysis shows potential as highly-reactive precursors to syn...It is challenging to balance the cyclability and rate capability of single crystal nickel-rich cathode materials(Ni>0.8).Multicomponent oxides by spray pyrolysis shows potential as highly-reactive precursors to synthesize single crystal nickel-rich cathode at lower temperature,yet Ni^(2+)will severely inhibit particle growth when Ni content exceeds 0.9.Herein,lithium nitrate(LiNO_(3))with low melting point and strong oxidation is introduced as collaborate lithium salts for fabrication of well-dispersed submicron and micron single crystal LiNi_(0.9)Co_(0.055)Mn_(0.045)O_(2)(NCM90)cathode without extra unit operation.By changing amount of LiNO_(3),particle size regulation is realized and cation disorder can be diminished.The as-prepared material with optimal content of 4 wt%LiNO_(3)(NCM90-4 LN)displays the most appropriate particle size(1μm)with approximately stoichiometric structure,and presents better kinetics characterization of lithium-ion diffusion(15%higher than NCM90)and good electrochemical performance with specific discharge capacity of 220.6 and 173.8 mAh g^(-1) at 0.1 C and 10 C at room temperature,respectively.This work broadens the conventional research methodology of size regulation for single crystal Ni-rich cathode materials and is indispensable for the development of designing principal of nickel-rich cathode materials for lithium-ion batteries.展开更多
A solar-blind photodetector is fabricated on single crystal Ga_2O_3 based on vertical structure Schottky barrier diode. A Cu Schottky contact electrode is prepared in a honeycomb porous structure to increase the ultra...A solar-blind photodetector is fabricated on single crystal Ga_2O_3 based on vertical structure Schottky barrier diode. A Cu Schottky contact electrode is prepared in a honeycomb porous structure to increase the ultraviolet(UV) transmittance.The quantum efficiency is about 400% at 42 V. The Ga_2O_3 photodetector shows a sharp cutoff wavelength at 259 nm with high solar-blind/visible(= 3213) and solar-blind/UV(= 834) rejection ratio. Time-resolved photoresponse of the photodetector is investigated at 253-nm illumination from room temperature(RT) to 85.8℃. The photodetector maintains a high reversibility and response speed, even at high temperatures.展开更多
Near-normal incident infrared reflectivity spectra of (100) MgAl2O4 spinel single crystal have been measured at different temperatures in the frequency region between 50 and 6000 cm^-1. Eight infrared-active phonon ...Near-normal incident infrared reflectivity spectra of (100) MgAl2O4 spinel single crystal have been measured at different temperatures in the frequency region between 50 and 6000 cm^-1. Eight infrared-active phonon modes are identified, which are fitted with the factorized form of the dielectric function. The dielectric property and optical conductivity of the MgAl2O4 crystal are analysed. From TO/LO splitting, the effective Szigeti charges and Born effective charges at different temperatures are calculated for studying the ionicity and the effect of polarization. Based on the relationship between the (LO-TO)1 splitting, which represents the transverse and longitudinal frequencies splitting of the highest energy phonon band in the reflectivity spectrum, and the ionic-covalent parameter, the four main phonon modes are assigned. MgA1204 can be considered as a pure ionic crystal and its optical characters do not change with decreasing temperature, so it may be used as a suitable substrate for high-Tc superconducting thin films.展开更多
The results of experimental investigation of n-type semiconductor based on Bi2Te3 alloy were presented. This material is used in manufacture of thermoelectric coolers and electrical power generation devices. BizTe2.88...The results of experimental investigation of n-type semiconductor based on Bi2Te3 alloy were presented. This material is used in manufacture of thermoelectric coolers and electrical power generation devices. BizTe2.88Se0.12 solid solution single crystal has been grown using the Czochralski method. Monitoring of structure changes of the sample was carried out by electron microscope. The elemental composition of the studied alloy was obtained by energy dispersive spectrometry (EDS) analysis and empirical formula of the compound was established. X-ray diffraction analysis confirmed that the Bi2Te2.88Se0.12 sample was a single phase with rhombohedral structure. The behavior upon heating was studied using differential thermal analysis (DTA) technique. Changes in physical and chemical properties of materials were measured as a function of increasing temperature by thermogravimetric analysis (TGA). The lattice parameters values obtained by X-ray powder diffraction analyses of Bi2Te2.88Se0.12 are very similar to BizTe3 lattice constants, indicating that a small portion of tellurium is replaced with selenium. The obtained values for specific electrical and thermal conductivities are in correlation with available literature data. The Vickers microhardness values are in range between HV 187 and HV 39.02 and decrease with load increasing. It is shown that very complex process of infrared thermography can be applied for characterization of thermoelectric elements and modules.展开更多
A series of big single crystals of BaFeFe2-xNixAs2 have been prepared by the FeAs self-flux method, with nominal nickel doping x = 0--0.12. The dimensions of the cleaved crystals are over 10~mm along ab plane and ~ 2...A series of big single crystals of BaFeFe2-xNixAs2 have been prepared by the FeAs self-flux method, with nominal nickel doping x = 0--0.12. The dimensions of the cleaved crystals are over 10~mm along ab plane and ~ 2~mm in maximum along the c direction. The measurements of x-ray diffraction, electrical resistance and magnetic property are carried out on the crystals. For the undoped parent compound BaFe2As2, both resistance and magnetization data display an anomaly associated with spin density wave and/or structural phase transition, with the transition temperatures at ~ 138~K. For Ni-doped BaFe2-xNixAs2 crystals, the superconducting critical temperature Tc ranges from 4.3~K for x=0.06 sample to 20~K for the optimally doped x=0.10 crystal.展开更多
This paper reports that polarized far-infrared reflectivity measurements have been done on LiGaO2 single crystal along two crystalline taxes at different temperatures. The temperature dependent frequencies of the long...This paper reports that polarized far-infrared reflectivity measurements have been done on LiGaO2 single crystal along two crystalline taxes at different temperatures. The temperature dependent frequencies of the longitudinal and transverse optical phonon have been obtained from the real part of optical conductivity and the loss function respectively. A small Drude component is observed at frequency below 300 cm^-1 which could arise from Li ions or oxygen deficiencies. The ionicity of LiGaO2 has been studied from the analysis of the Born effective charge of different ions.展开更多
Superconducting La1.937Sr0.063CuO4 crystals grown by the travelling-solvent floating-zone technique were thermally treated under various temperatures and oxygen pressures for moderately adjusting the oxygen content. T...Superconducting La1.937Sr0.063CuO4 crystals grown by the travelling-solvent floating-zone technique were thermally treated under various temperatures and oxygen pressures for moderately adjusting the oxygen content. The response of intrinsic electronic property of the crystals to the change of hole density in La2-xSrxCuO4 in the vicinity of the magic doping of x= 1/16 (= 0.0625) is studied in detail by magnetic measurements under various fields up to 1 T. It is found that when the superconducting critical temperature (Tc) increases with the oxygen content, there appears also a new subtle electronic state that can be detected from the differential curves of diamagnetic susceptibility dx/dT of the crystal sample. In contrast with the intrinsic state, the new subtle electronic state is very fragile under the magnetic fields. Our results indicate that a moderate change in oxygen doping does not significantly modify the intrinsic electronic state originally existing at the magic doping level.展开更多
The 1-azido-2-chloro-4-nitrobenzene was prepared by nucleophilic substitution between 2-chloro-4-nitro-1-(trifluoromethylsulfinyl)benzene and sodium azide, and its structure was characterized by NMR spectrum and X-ray...The 1-azido-2-chloro-4-nitrobenzene was prepared by nucleophilic substitution between 2-chloro-4-nitro-1-(trifluoromethylsulfinyl)benzene and sodium azide, and its structure was characterized by NMR spectrum and X-ray single-crystal diffraction. It crystallizes in the monoclinic system, space group P21/n, Z = 8 and Mr = 198.57. A cultivation process of the single crystal of unstable aryl azide was provided. The group of trifluoromethyl sulfinyl was found for the first time to be a new excellent leaving group of aromatic nucleophilic substitution reactions.展开更多
The maximum velocity of a mobile vortex in movement is generally limited by the phenomenon of flux-flow instability(FFI),which necessitates weak vortex pinning and fast heat removal from non-equilibrium electrons.We h...The maximum velocity of a mobile vortex in movement is generally limited by the phenomenon of flux-flow instability(FFI),which necessitates weak vortex pinning and fast heat removal from non-equilibrium electrons.We here demonstrate exfoliations and nano-fabrications of Bi_(2)Sr_(2)Ca_(2)Cu_(3)O_(10+δ) crystalline nanostrips,which possess a rather weak pinning volume of vortices,relatively low resistivity,and large normal electron diffusion coefficient.The deduced vortex velocity in Bi_(2)Sr_(2)Ca_(2)Cu_(3)O_(10+δ) crystalline nanostrips can be up to 300 km/s near the superconducting transition temperature,well above the speed of sound.The observed vortex velocity is an order of magnitude faster than that of conventional superconducting systems,representing a perfect platform for exploration of ultra-fast vortex matter and a good candidate for fabrications of superconducting nanowire single photon detectors or superconducting THz modulator.展开更多
基金Project supported by the National Key Research and Development Program of China (Grant Nos.2023YFA1406500 and 2019YFA0308602)the National Natural Science Foundation of China (Grant Nos.12104011,12274388,12074425,52102333,12104010,12204004,and 11874422)the Natural Science Foundation of Anhui Province (Grant Nos.2108085QA22 and 2108085MA16)。
文摘We report the magnetotransport and thermal properties of RuAs_(2) single crystal.RuAs_(2) exhibits semiconductor behavior and localization effect.The crossover from normal state to diffusive transport in the weak localization(WL)state and then to variable range hopping(VRH)transport in the strong localization state has been observed.The transitions can be reflected in the measurement of resistivity and Seebeck coefficient.Negative magnetoresistance(NMR)emerges with the appearance of localization effect and is gradually suppressed in high magnetic field.The temperature dependent phase coherence length extracted from the fittings of NMR also indicates the transition from WL to VRH.The measurement of Hall effect reveals an anomaly of temperature dependent carrier concentration caused by localization effect.Our findings show that RuAs_(2) is a suitable platform to study the localized state.
基金supported by the National Natural Science Foundation of China (52005134&51975154)China Postdoctoral Science Foundation (2022T150163, 2020M670901)+4 种基金Self-Planned Task (No. SKLRS202214B) of State Key Laboratory of Robotics and System (HIT)Heilongjiang Postdoctoral Fund (LBH-Z20016)Shenzhen Science and Technology Program (GJHZ20210705142804012)Fundamental Research Funds for the Central Universities(FRFCU5710051122)Open Fund of ZJUT Xinchang Research Institute
文摘To understand the anisotropy dependence of the damage evolution and material removal during the machining process of MgF_(2) single crystals,nanoscratch tests of MgF_(2) single crystals with different crystal planes and directions were systematically performed,and surface morphologies of the scratched grooves under different conditions were analyzed.The experimental results indicated that anisotropy considerably affected the damage evolution in the machining process of MgF_(2) single crystals.A stress field model induced by the scratch was developed by considering the anisotropy,which indicated that during the loading process,median cracks induced by the tensile stress initiated and propagated at the front of the indenter.Lateral cracks induced by tensile stress initiated and propagated on the subsurface during the unloading process.In addition,surface radial cracks induced by the tensile stress were easily generated during the unloading process.The stress change led to the deflection of the propagation direction of lateral cracks.Therefore,the lateral cracks propagated to the workpiece surface,resulting in brittle removal in the form of chunk chips.The plastic deformation parameter indicated that the more the slip systems were activated,the more easily the plastic deformation occurred.The cleavage fracture parameter indicated that the cracks propagated along the activated cleavage planes,and the brittle chunk removal was owing to the subsurface cleavage cracks propagating to the crystal surface.Under the same processing parameters,the scratch of the(001)crystal plane along the[100]crystal-orientation was found to be the most conducive to achieving plastic machining of MgF_(2) single crystals.The theoretical results agreed well with the experimental results,which will not only enhance the understanding of the anisotropy dependence of the damage evolution and removal process during the machining of MgF_(2) crystals,but also provide a theoretical foundation for achieving the high-efficiency and low-damage processing of anisotropic single crystals.
基金the financially support of the National Natural Science Foundation of China(12164051)the Joint Foundation of Provincial Science and Technology Department-Double First-class Construction of Yunnan University(2019FY003016)+4 种基金the Young Top Talent Project of Yunnan Province(YNWR-QNBJ-2018-229)the financially support by Yunnan Major Scientific and Technological Projects(202202AG050016)Advanced Analysis and Measurement Center of Yunnan University for the sample characterization service and the Postgraduate Research and Innovation Foundation of Yunnan University(2021Y036)the financially support of the National Natural Science Foundation of China(62064013)the Application Basic Research Project of Yunnan Province[2019FB130]。
文摘Low-dimensional halide perovskites have become the most promising candidates for X-ray imaging,yet the issues of the poor chemical stability of hybrid halide perovskite,the high poisonousness of lead halides and the relatively low detectivity of the lead-free halide perovskites which seriously restrain its commercialization.Here,we developed a solution inverse temperature crystal growth(ITCG)method to bring-up high quality Cs_(3)Cu_(2)I_(5)crystals with large size of centimeter order,in which the oleic acid(OA)is introduced as an antioxidative ligand to inhibit the oxidation of cuprous ions effieiently,as well as to decelerate the crystallization rate remarkalby.Based on these fine crystals,the vapor deposition technique is empolyed to prepare high quality Cs_(3)Cu_(2)I_(5)films for efficient X-ray imaging.Smooth surface morphology,high light yields and short decay time endow the Cs_(3)Cu_(2)I_(5)films with strong radioluminescence,high resolution(12 lp/mm),low detection limits(53 nGyair/s)and desirable stability.Subsequently,the Cs_(3)Cu_(2)I_(5)films have been applied to the practical radiography which exhibit superior X-ray imaging performance.Our work provides a paradigm to fabricate nonpoisonous and chemically stable inorganic halide perovskite for X-ray imaging.
基金Supported by the National Basic Research Program of China under Grant Nos 2011CBA00100 and 2012CB821404the Project of International Team on Superconductivity and Novel Electronic Materials of Chinese Academy of Sciences
文摘We report a systematic investigation on c-axis point-contact Andreev reflection (PCAR) in BaFe2-xNixAs2 superconducting single crystals from underdoped to overdoped regions (0.075≤ x ≤0.15). At low temperatures, an in-gap sharp peak at low-bias voltage is observed in PCAR for overdoped samples, in contrast to the case of underdoped junctions, in which an in-gap plateau is observed. The variety of the conductance spectra with doping can be well described by using a generalized Blonder-Tinkham-Klapwijk formalism with an angle-dependent gap. This gap shows a clear crossover from a nodeless in the underdoped side to a nodal feature in the overdoped region. This result provides evidence of the doping-induced evolution of the superconducting order parameter when the inter-pocket and intra-pocket scattering are tuned through doping, as expected in the s± scenario.
基金Supported by the National Natural Science Foundation of China under Grant No 11474339the National Basic Research Program of China under Grant Nos 2010CB923000 and 2011CBA00100the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No XDB07020100
文摘Single crystals of undoped CaFe2As2 are grown by an FeAs self-flux method, and the crystals are quenched in ice-water rapidly after high-temperature growth. The quenched crystal undergoes a collapsed tetragonal structural phase transition around 80 K revealed by the temperature-dependent x-ray diffraction measurements. Superconductivity below 25 K is observed in the collapsed phase by resistivity and magnetization measurements. The isothermal magnetization curve measured at 2 K indicates that this is a typical type-ll superconductor. For comparison, we systematically characterize the properties of the furnace-cooled, quenched, and post-annealed single crystals, and find strong internal crystallographic strain existing in the quenched samples, which is the key for the occurrence of superconductivity in the undoped CaFe2As2 single crystals.
基金Project supported by the State Key Development Program for Basic Research of China(Grant No.2006CB601002)the National Natural Science Foundation of China(Grant Nos.10734120 and 10874211)
文摘Single crystals of undoped and nickel-doped BaFe2-xNixAs2 (x = 0, 0.04) have been grown by FeAs self-flux method. The maximum dimension of the crystal is as large as - 1 cm along ab plane. The crystalline topography of a cleaved crystal surface is examined by scanning electron microscope (SEM). By x-ray powder diffraction (XRD) experiments using pure silicon as an internal standard, precise unit cell parameters (tetragonal at room temperature) are determined: a = 3.9606(4) A^°. (1 A^°=0.1 nm), c = 13.015(2) A^°. for BaFe1.96Ni0.04As2 and a = 3.9590(5) A^°, c = 13.024(1) A^°for BaFe2As2. DC magnetization and transport measurements are performed to check superconducting transition (Tc = 15 K for x = 0.04) and other subtle anomalies. For BaFe1.96Ni0.04As2 crystal, the resistance curve at normal state shows two distinct anomalies associated with spin and structure transitions, and its magnetization data above - 91 K exhibit a linear temperature dependence due to spin density wave (SDW) instability.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11190022,11334010 and 11534007the National Basic Research Program of China under Grant No 2015CB921000the Strategic Priority Research Program(B)of Chinese Academy of Sciences under Grant No XDB07020300
文摘We report a reproducible approach in preparing high-quality overdoped Bi2 Sr2 CaCu2 08+δ (Bi2212) single crystals by annealing Bi2212 crystals in high oxygen pressure followed by a fast quenching. In this way, high-quality overdoped and heavily overdoped Bi2212 single crystals are obtained by controlling the annealing oxygen pressure. We find that, beyond a limit of oxygen pressure that can achieve most heavily overdoped Bi2212 with a Tc N63 K, the annealed Bi2212 begins to decompose. This accounts for the existence of the hole-doping limit and thus the Tc limit in the heavily overdoped region of Bi2212 by the oxygen annealing process. These results provide a reliable way in preparing high-quality overdoped and heavily overdoped Bi2212 crystals that are important for studies of the physical properties, electronic structure and superconductivity mechanism of the cuprate superconductors.
文摘The transmittance (T) and the reflectance (R) were measured for (TMA)2ZnCl4 single crystals and hence the absorption coefficient (α), extinction coefficient (Kex.), refractive index (n), real and im-aginary dielectric constants (ε', ε") of (TMA)2ZnCl4 crystals were calculated as a function of photon energy. The analysis of the spectra behavior of the absorption coefficient in the absorption region revealed indirect transition. The dispersion of the refractive index is discussed in terms of the sin-gle oscillator Wemple-DiDomenico model. The single oscillator energy (E0), the dispersion energy (Ed), the lattice dielectric constant (εL) and the ratio of free charge carrier concentration to the ef-fective mass (N/m*) were estimated. The FTIR spectra were recorded to study the functional groups of the as grown and annealed samples.
文摘Exploring low-cost and highly active photocatalysts is very urgent to accomplish complete removal of phenolic contaminants and overcome the limitations of the existing photocatalysts.In this study,we designed and synthesized noble metal-free TiO2 photocatalysts by introducing bismuth nanoparticles as modifiers of a TiO2 single crystal(Bi-SCTiO2).The Bi-SCTiO2 can make full use of the synergistic effect of a small band overlap and low charge carrier density(Bi)with a high conductivity(single crystal),significantly boosting the separation and migration of the photogenerated charge pairs.Therefore,the Bi-SCTiO2 photocatalyst exhibits a significantly enhanced degradation rate(12 times faster)of 4-nitrophenol than a TiO2 single crystal under simulated sunlight irradiation.Notably,the complete removal of phenolic contaminants is achieved in various water matrices,which not only successfully overcomes the incomplete degradation in many reported photocatalytic systems,but also manifests a significant practical potential for sewage disposal.Therefore,this work presents a new insight in designing and constructing noble metal-free decorated semiconductor single-crystal photocatalysts with excellent activity and cyclability.
基金Supported by the National Basic Research Program of China under Grant Nos 2015CB921303,2011CBA00100 and 2012CB821404the Strategic Priority Research Program(B) of Chinese Academy of Sciences under Grant Nos XDB07020100and XDB07020200the National Natural Science Foundation of China under Grant No 11174350
文摘We report on the single crystal growth and superconducting properties of PbTaSe2 with the non-centrosymmetric crystal structure. By using the chemicM vapor transport technique, centimeter-size single crystals are success- fully obtained. The measurement of temperature dependence of electricaJ resistivity p(T) in both normal and superconducting states indicates a quasi-two-dimensional electronic state in contrast to that of polycrystalline samples. Specific heat C(T) measurement reveals a bulk superconductivity with Tc ≈ 3.75K and a specific heat jump ratio of 1.42. All these results are in agreement with a moderately electron-phonon coupled, type-g Bardeen-Cooper-Schrieffer superconductor.
基金financially supported by the National Natural Science of China (Grant Nos. 51834008, 51874360)the National Key Research and Development Program of China (Grant No. 2018YFC1902205)。
文摘It is challenging to balance the cyclability and rate capability of single crystal nickel-rich cathode materials(Ni>0.8).Multicomponent oxides by spray pyrolysis shows potential as highly-reactive precursors to synthesize single crystal nickel-rich cathode at lower temperature,yet Ni^(2+)will severely inhibit particle growth when Ni content exceeds 0.9.Herein,lithium nitrate(LiNO_(3))with low melting point and strong oxidation is introduced as collaborate lithium salts for fabrication of well-dispersed submicron and micron single crystal LiNi_(0.9)Co_(0.055)Mn_(0.045)O_(2)(NCM90)cathode without extra unit operation.By changing amount of LiNO_(3),particle size regulation is realized and cation disorder can be diminished.The as-prepared material with optimal content of 4 wt%LiNO_(3)(NCM90-4 LN)displays the most appropriate particle size(1μm)with approximately stoichiometric structure,and presents better kinetics characterization of lithium-ion diffusion(15%higher than NCM90)and good electrochemical performance with specific discharge capacity of 220.6 and 173.8 mAh g^(-1) at 0.1 C and 10 C at room temperature,respectively.This work broadens the conventional research methodology of size regulation for single crystal Ni-rich cathode materials and is indispensable for the development of designing principal of nickel-rich cathode materials for lithium-ion batteries.
基金Project supported by National Key Research and Development Plan of China(Grant Nos.2016YFB0400600 and 2016YFB0400601)the National Natural Science Foundation of China(Grant Nos.61574026,11675198,61774072,and 11405017)+2 种基金the Natural Science Foundation of Liaoning Province,China(Grant Nos.201602453 and 201602176)China Postdoctoral Science Foundation Funded Project(Grant No.2016M591434)the Dalian Science and Technology Innovation Fund(Grant No.2018J12GX060)
文摘A solar-blind photodetector is fabricated on single crystal Ga_2O_3 based on vertical structure Schottky barrier diode. A Cu Schottky contact electrode is prepared in a honeycomb porous structure to increase the ultraviolet(UV) transmittance.The quantum efficiency is about 400% at 42 V. The Ga_2O_3 photodetector shows a sharp cutoff wavelength at 259 nm with high solar-blind/visible(= 3213) and solar-blind/UV(= 834) rejection ratio. Time-resolved photoresponse of the photodetector is investigated at 253-nm illumination from room temperature(RT) to 85.8℃. The photodetector maintains a high reversibility and response speed, even at high temperatures.
基金Project supported by the National Natural Science Foundation of China (Grant No 10474128) and Chinese Academy of Sciences.
文摘Near-normal incident infrared reflectivity spectra of (100) MgAl2O4 spinel single crystal have been measured at different temperatures in the frequency region between 50 and 6000 cm^-1. Eight infrared-active phonon modes are identified, which are fitted with the factorized form of the dielectric function. The dielectric property and optical conductivity of the MgAl2O4 crystal are analysed. From TO/LO splitting, the effective Szigeti charges and Born effective charges at different temperatures are calculated for studying the ionicity and the effect of polarization. Based on the relationship between the (LO-TO)1 splitting, which represents the transverse and longitudinal frequencies splitting of the highest energy phonon band in the reflectivity spectrum, and the ionic-covalent parameter, the four main phonon modes are assigned. MgA1204 can be considered as a pure ionic crystal and its optical characters do not change with decreasing temperature, so it may be used as a suitable substrate for high-Tc superconducting thin films.
基金"Development of ecological knowledge-based advanced materials and technologies for multifunctional application" (Grant No.TR34005)"New approach to designing materials for energy conversion and storage" (Grant No.OI172060)"0-3D nanostructures for application in electronics and renewable energy sources:synthesis,characterisation and processing" (Grant No.III45007)
文摘The results of experimental investigation of n-type semiconductor based on Bi2Te3 alloy were presented. This material is used in manufacture of thermoelectric coolers and electrical power generation devices. BizTe2.88Se0.12 solid solution single crystal has been grown using the Czochralski method. Monitoring of structure changes of the sample was carried out by electron microscope. The elemental composition of the studied alloy was obtained by energy dispersive spectrometry (EDS) analysis and empirical formula of the compound was established. X-ray diffraction analysis confirmed that the Bi2Te2.88Se0.12 sample was a single phase with rhombohedral structure. The behavior upon heating was studied using differential thermal analysis (DTA) technique. Changes in physical and chemical properties of materials were measured as a function of increasing temperature by thermogravimetric analysis (TGA). The lattice parameters values obtained by X-ray powder diffraction analyses of Bi2Te2.88Se0.12 are very similar to BizTe3 lattice constants, indicating that a small portion of tellurium is replaced with selenium. The obtained values for specific electrical and thermal conductivities are in correlation with available literature data. The Vickers microhardness values are in range between HV 187 and HV 39.02 and decrease with load increasing. It is shown that very complex process of infrared thermography can be applied for characterization of thermoelectric elements and modules.
基金supported by the State Key Development Program for Basic Research of China (Grant No. 2006CB601002)the National Natural Science Foundation of China (Grant No. 10734120)
文摘A series of big single crystals of BaFeFe2-xNixAs2 have been prepared by the FeAs self-flux method, with nominal nickel doping x = 0--0.12. The dimensions of the cleaved crystals are over 10~mm along ab plane and ~ 2~mm in maximum along the c direction. The measurements of x-ray diffraction, electrical resistance and magnetic property are carried out on the crystals. For the undoped parent compound BaFe2As2, both resistance and magnetization data display an anomaly associated with spin density wave and/or structural phase transition, with the transition temperatures at ~ 138~K. For Ni-doped BaFe2-xNixAs2 crystals, the superconducting critical temperature Tc ranges from 4.3~K for x=0.06 sample to 20~K for the optimally doped x=0.10 crystal.
基金supported by the National Natural Science Foundation of China (Grant No 10474128)
文摘This paper reports that polarized far-infrared reflectivity measurements have been done on LiGaO2 single crystal along two crystalline taxes at different temperatures. The temperature dependent frequencies of the longitudinal and transverse optical phonon have been obtained from the real part of optical conductivity and the loss function respectively. A small Drude component is observed at frequency below 300 cm^-1 which could arise from Li ions or oxygen deficiencies. The ionicity of LiGaO2 has been studied from the analysis of the Born effective charge of different ions.
基金Project supported by the Ministry of Science and Technology of China (973 project Grant No 2006CB0L0302)the National Natural Science Foundation of China (Grant No 10574149)Chinese Academy of Sciences (Grant No KJCX2-SW-W18)
文摘Superconducting La1.937Sr0.063CuO4 crystals grown by the travelling-solvent floating-zone technique were thermally treated under various temperatures and oxygen pressures for moderately adjusting the oxygen content. The response of intrinsic electronic property of the crystals to the change of hole density in La2-xSrxCuO4 in the vicinity of the magic doping of x= 1/16 (= 0.0625) is studied in detail by magnetic measurements under various fields up to 1 T. It is found that when the superconducting critical temperature (Tc) increases with the oxygen content, there appears also a new subtle electronic state that can be detected from the differential curves of diamagnetic susceptibility dx/dT of the crystal sample. In contrast with the intrinsic state, the new subtle electronic state is very fragile under the magnetic fields. Our results indicate that a moderate change in oxygen doping does not significantly modify the intrinsic electronic state originally existing at the magic doping level.
文摘The 1-azido-2-chloro-4-nitrobenzene was prepared by nucleophilic substitution between 2-chloro-4-nitro-1-(trifluoromethylsulfinyl)benzene and sodium azide, and its structure was characterized by NMR spectrum and X-ray single-crystal diffraction. It crystallizes in the monoclinic system, space group P21/n, Z = 8 and Mr = 198.57. A cultivation process of the single crystal of unstable aryl azide was provided. The group of trifluoromethyl sulfinyl was found for the first time to be a new excellent leaving group of aromatic nucleophilic substitution reactions.
基金supporting high quality of post growth treatment Bi_(2)Sr_(2)Ca_(2)Cu_(3)O_(10+δ)single crystalssupported by the National Key Research and Development Program of China(Grant No.2017YFA0304000)+4 种基金the National Natural Science Foundation of China(Grant Nos.61971408 and 61827823)Shanghai Municipal Science and Technology Major Project(Grant No.2019SHZDZX01)Shanghai Rising-Star Program(Grant No.20QA1410900)the Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant Nos.2020241 and 2021230)the Natural Science Foundation of Shanghai(Grant No.19ZR1467400)。
文摘The maximum velocity of a mobile vortex in movement is generally limited by the phenomenon of flux-flow instability(FFI),which necessitates weak vortex pinning and fast heat removal from non-equilibrium electrons.We here demonstrate exfoliations and nano-fabrications of Bi_(2)Sr_(2)Ca_(2)Cu_(3)O_(10+δ) crystalline nanostrips,which possess a rather weak pinning volume of vortices,relatively low resistivity,and large normal electron diffusion coefficient.The deduced vortex velocity in Bi_(2)Sr_(2)Ca_(2)Cu_(3)O_(10+δ) crystalline nanostrips can be up to 300 km/s near the superconducting transition temperature,well above the speed of sound.The observed vortex velocity is an order of magnitude faster than that of conventional superconducting systems,representing a perfect platform for exploration of ultra-fast vortex matter and a good candidate for fabrications of superconducting nanowire single photon detectors or superconducting THz modulator.