Intrinsic fi-Ga203 and Zn-doped β-Ga203 films were prepared using RF magnetron sputtering. The effects of the Zn doping and thermal annealing on the structural and optical properties are investigated. In compar- ison...Intrinsic fi-Ga203 and Zn-doped β-Ga203 films were prepared using RF magnetron sputtering. The effects of the Zn doping and thermal annealing on the structural and optical properties are investigated. In compar- ison with the intrinsic β-Ga203 films, the microstructure, optical transmittance, optical absorption, optical energy gap, and photoluminescence ofZn-doped β-Ga203 films change significantly. The post-annealed β-Ga203 films are polycrystalline. After Zn doping, the crystallization deteriorates, the optical band gap shrinks, the transmittance decreases and the UV, blue, and green emission bands are enhanced.展开更多
基金supported by the National Natural Science Foundation of China(No.10974077)the Natural Science Foundation of Shandong Province,China(No.2009ZRB01702)the Shandong Province Higher Educational Science andTechnology Program,China(No. J10LA08)
文摘Intrinsic fi-Ga203 and Zn-doped β-Ga203 films were prepared using RF magnetron sputtering. The effects of the Zn doping and thermal annealing on the structural and optical properties are investigated. In compar- ison with the intrinsic β-Ga203 films, the microstructure, optical transmittance, optical absorption, optical energy gap, and photoluminescence ofZn-doped β-Ga203 films change significantly. The post-annealed β-Ga203 films are polycrystalline. After Zn doping, the crystallization deteriorates, the optical band gap shrinks, the transmittance decreases and the UV, blue, and green emission bands are enhanced.