This paper first introduces Legendre wavelet bases and derives their rich properties. Then these properties are applied to estimation of approximation error upper bounded in spaces and by norms and &...This paper first introduces Legendre wavelet bases and derives their rich properties. Then these properties are applied to estimation of approximation error upper bounded in spaces and by norms and , respectively. These estimate results are valuable to solve integral-differential equations by Legendre wavelet method.展开更多
文摘This paper first introduces Legendre wavelet bases and derives their rich properties. Then these properties are applied to estimation of approximation error upper bounded in spaces and by norms and , respectively. These estimate results are valuable to solve integral-differential equations by Legendre wavelet method.