以Ni(NO3)2水溶液为电解液,通过电沉积法在泡沫镍基体上原位生长了Ni(OH)2薄膜。采用X-射线衍射、傅里叶变换红外光谱、热重分析和场发射扫描电子显微镜对样品的微观结构进行了分析,发现该样品是具有片状纳米次级结构的α-Ni(OH)2,其内...以Ni(NO3)2水溶液为电解液,通过电沉积法在泡沫镍基体上原位生长了Ni(OH)2薄膜。采用X-射线衍射、傅里叶变换红外光谱、热重分析和场发射扫描电子显微镜对样品的微观结构进行了分析,发现该样品是具有片状纳米次级结构的α-Ni(OH)2,其内部含有一定量的结晶水和层间阴离子;采用循环伏安、交流阻抗和充放电测试研究了样品的嵌锂性能,结果表明该样品具有很高的嵌锂活性和良好的倍率性能,在50 m A/g充放电电流密度下样品的首次放电比容量为1 435 m Ah/g,第二圈放电比容量为970 m Ah/g,即使是在1 000 m A/g的高电流密度下样品仍具有281.9 m Ah/g的放电比容量。展开更多
文摘以Ni(NO3)2水溶液为电解液,通过电沉积法在泡沫镍基体上原位生长了Ni(OH)2薄膜。采用X-射线衍射、傅里叶变换红外光谱、热重分析和场发射扫描电子显微镜对样品的微观结构进行了分析,发现该样品是具有片状纳米次级结构的α-Ni(OH)2,其内部含有一定量的结晶水和层间阴离子;采用循环伏安、交流阻抗和充放电测试研究了样品的嵌锂性能,结果表明该样品具有很高的嵌锂活性和良好的倍率性能,在50 m A/g充放电电流密度下样品的首次放电比容量为1 435 m Ah/g,第二圈放电比容量为970 m Ah/g,即使是在1 000 m A/g的高电流密度下样品仍具有281.9 m Ah/g的放电比容量。