Neonatal hypoxic-ischemic brain injury is the main cause of hypoxic-ischemic encephalopathy and cerebral palsy.Currently,there are few effective clinical treatments for neonatal hypoxic-ischemic brain injury.Here,we i...Neonatal hypoxic-ischemic brain injury is the main cause of hypoxic-ischemic encephalopathy and cerebral palsy.Currently,there are few effective clinical treatments for neonatal hypoxic-ischemic brain injury.Here,we investigated the neuroprotective and molecular mechanisms of exogenous nicotinamide adenine dinucleotide,which can protect against hypoxic injury in adulthood,in a mouse model of neonatal hypoxic-ischemic brain injury.In this study,nicotinamide adenine dinucleotide(5 mg/kg)was intraperitoneally administered 30 minutes befo re surgery and every 24 hours thereafter.The results showed that nicotinamide adenine dinucleotide treatment improved body weight,brain structure,adenosine triphosphate levels,oxidative damage,neurobehavioral test outcomes,and seizure threshold in experimental mice.Tandem mass tag proteomics revealed that numerous proteins were altered after nicotinamide adenine dinucleotide treatment in hypoxic-ischemic brain injury mice.Parallel reaction monitoring and western blotting confirmed changes in the expression levels of proteins including serine(or cysteine)peptidase inhibitor,clade A,member 3N,fibronectin 1,5'-nucleotidase,cytosolic IA,microtubule associated protein 2,and complexin 2.Proteomics analyses showed that nicotinamide adenine dinucleotide ameliorated hypoxic-ischemic injury through inflammation-related signaling pathways(e.g.,nuclear factor-kappa B,mitogen-activated protein kinase,and phosphatidylinositol 3 kinase/protein kinase B).These findings suggest that nicotinamide adenine dinucleotide treatment can improve neurobehavioral phenotypes in hypoxic-ischemic brain injury mice through inflammation-related pathways.展开更多
Pancreatitis and pancreatic cancer(PC)stand as the most worrisome ailments affecting the pancreas.Researchers have dedicated efforts to unraveling the mechanisms underlying these diseases,yet their true nature continu...Pancreatitis and pancreatic cancer(PC)stand as the most worrisome ailments affecting the pancreas.Researchers have dedicated efforts to unraveling the mechanisms underlying these diseases,yet their true nature continues to elude their grasp.Within this realm,oxidative stress is often believed to play a causal and contributory role in the development of pancreatitis and PC.Excessive accumulation of reactive oxygen species(ROS)can cause oxidative stress,and the key enzyme responsible for inducing ROS production in cells is nicotinamide adenine dinucleotide phosphate hydrogen oxides(NOX).NOX contribute to pancreatic fibrosis and inflammation by generating ROS that injure acinar cells,activate pancreatic stellate cells,and mediate macrophage polarization.Excessive ROS production occurs during malignant transformation and pancreatic carcinogenesis,creating an oxidative microenvironment that can cause abnormal apoptosis,epithelial to mesenchymal transition and genomic instability.Therefore,understanding the role of NOX in pancreatic diseases contributes to a more in-depth exploration of the exact pathogenesis of these diseases.In this review,we aim to summarize the potential roles of NOX and its mechanism in pancreatic disorders,aiming to provide novel insights into understanding the mechanisms underlying these diseases.展开更多
Nicotinamide adenine dinucleotide phosphate oxidase(NOX) is a multisubunit enzyme complex that utilizes nicotinamide adenine dinucleotide phosphate to produce superoxide anions and other reactive oxygen species. Under...Nicotinamide adenine dinucleotide phosphate oxidase(NOX) is a multisubunit enzyme complex that utilizes nicotinamide adenine dinucleotide phosphate to produce superoxide anions and other reactive oxygen species. Under normal circumstances, reactive oxygen species mediate a number of important cellular functions, including the facilitation of adaptive immunity. In pathogenic circumstances, however,excess reactive oxygen species generated by NOX promotes apoptotic cell death. In ischemic stroke, in particular, it has been shown that both NOX activation and derangements in glucose metabolism result in increased apoptosis. Moreover, recent studies have established that glucose, as a NOX substrate, plays a vital role in the pathogenesis of reperfusion injury. Thus, NOX inhibition has the potential to mitigate the deleterious impact of hyperglycemia on stroke. In this paper, we provide an overview of this research,coupled with a discussion of its implications for the development of NOX inhibition as a strategy for the treatment of ischemic stroke. Both inhibition using apocynin, as well as the prospect of developing more specific inhibitors based on what is now understood of the biology of NOX assembly and activation, will be highlighted in the course of our discussion.展开更多
Oxaliplatin, an anticancer drug commonly used to treat colorectal cancer and other tumors, has a number of serious side effects, most notably neuropathy and ototoxicity. To gain insights into its ototoxic profile, oxa...Oxaliplatin, an anticancer drug commonly used to treat colorectal cancer and other tumors, has a number of serious side effects, most notably neuropathy and ototoxicity. To gain insights into its ototoxic profile, oxaliplatin was applied to rat cochlear organ cultures. Consistent with it neurotoxic propensity, oxaliplatin selectively damaged nerve fibers at a very low dose 1 μM. In contrast, the dose required to damage hair cells and spiral ganglion neurons was 50 fold higher (50 μM). Oxailiplatin-induced cochlear lesions initial-ly increased with dose, but unexpectedly decreased at very high doses. This non-linear dose response could be related to depressed oxaliplatin uptake via active transport mechanisms. Previous studies have demon-strated that axonal degeneration involves biologically active processes which can be greatly attenuated by nicotinamide adenine dinucleotide (NAD+). To determine if NAD+would protect spiral ganglion axons and the hair cells from oxaliplatin damage, cochlear cultures were treated with oxaliplatin alone at doses of 10 μM or 50 μM respectively as controls or combined with 20 mM NAD+. Treatment with 10 μM oxaliplatin for 48 hours resulted in minor damage to auditory nerve fibers, but spared cochlear hair cells. However, when cochlear cultures were treated with 10 μM oxaliplatin plus 20 mM NAD+, most auditory nerve fibers were intact. 50 μM oxaliplatin destroyed most of spiral ganglion neurons and cochlear hair cells with apop-totic characteristics of cell fragmentations. However, 50 μM oxaliplatin plus 20 mM NAD+treatment great-ly reduced neuronal degenerations and hair cell missing. The results suggested that NAD+provides signifi-cant protection against oxaliplatin-induced neurotoxicity and ototoxicity, which may be due to its actions of antioxidant, antiapoptosis, and energy supply.展开更多
Recently biospecific affinity chromatography has been widely used for the separation and purification of various enzymes and nucleic acids. In this paper, a series of synthetic reactions of solid-liquid phase were car...Recently biospecific affinity chromatography has been widely used for the separation and purification of various enzymes and nucleic acids. In this paper, a series of synthetic reactions of solid-liquid phase were carried out on silica surface, using a macroporous(30 mu m), microspherical silica (8 mu m) as the matrix and gamma-aminopropyltriethoxysilane as the activating agent, the nicotinamide adenine dinucleotide(NAD) was bonded through its amino groups to the carboxylic groups of linked phospholipid which was bonded covalently on aminated support. The bonded stationary phase has high thermal stability, and could be used to separate of nucleotides with good resolution.展开更多
Nicotinamide adenine dinucleotide (NAD) oscillation was observed when the isolated mitochondria were immersed in a pyruvate solution. In addition, when an adenosine diphosphate (ADP) was added to the mitochondrial sus...Nicotinamide adenine dinucleotide (NAD) oscillation was observed when the isolated mitochondria were immersed in a pyruvate solution. In addition, when an adenosine diphosphate (ADP) was added to the mitochondrial suspension containing pyruvate, adenosine triphosphate (ATP) oscillation was observed as well as NADH oscillation. At this time, the pH within mitochondria also oscillated. It was found that the oscillatory reaction of NADH caused by the membrane permeation of pyruvate continues, causing the oscillation of NADH and H+ in the subsequent reactions. The pH oscillation led to the ATP oscillation. It is considered that the oscillatory reaction caused by the gradual entry of pyruvate into mitochondria was thought to be carried over to both the citric acid cycle and the respiratory chain, ultimately leading to the ATP oscillation in oxidative phosphorylation. Similarly, it was found that membrane permeation of malate causes the gradual occurrence of NADH, at which point NADH oscillates, followed by an oscillatory reaction of the respiratory chain, and finally ATP oscillation. It was found that the oscillations of NADH and ATP occur without going through the citric acid cycle. Oscillations of NADH and other intermediates in both the citric acid cycle and respiratory chain were also confirmed by experiments using semipermeable membranes. These results support our hypothesis that the gradual entry of the substrate by membrane permeation triggers an oscillatory reaction of the enzyme, which is also carried over to subsequent reactions.展开更多
The redox property of the ultrasmall coinage nanoclusters(with several to tens of Au/Ag atoms)has elucidated the electrontransfer capacity of nanoclusters,has been successfully utilized in a variety of redox conversio...The redox property of the ultrasmall coinage nanoclusters(with several to tens of Au/Ag atoms)has elucidated the electrontransfer capacity of nanoclusters,has been successfully utilized in a variety of redox conversions(such as from CO_(2)to CO).Nevertheless,their biological applications are mainly restricted by the scarcity of atomically precise,water-soluble metal nanoclusters,the limited application(mainly on the decomposition of H_(2)O_(2)in these days).Herein,mercaptosuccinic acid(MSA)protected ultrasmall alloy AuAg nanoclusters were prepared,the main product was determined[Au_(3)Ag_(5)(MSA)_(3)]−by electrospray ionization mass spectrometry(ESI-MS).The clusters can not only mediate the decomposition of H_(2)O_(2)to generate hydroxyl radicals,but is also able to mediate the reduction of nicotinamide adenine dinucleotide(NAD)to its reduced form of NADH.This is the first time that the atomically precise metal nanoclusters were used to mediate the coenzyme reduction.The preliminary mechanistic insights imply the reaction to be driven by the hydrogen bonding between the carboxylic groups(on the surface of MSA)and the amino N–H bonds(on NAD).In this context,the presence of the carboxylic groups,the sub-nanometer size regime(~1 nm),the synergistic effect of the Au-Ag clusters are pre-requisite to the NAD reduction.展开更多
Objective Little is known about the association between whole-blood nicotinamide adenine dinucleotide(NAD^(+))levels and nabothian cysts.This study aimed to assess the association between NAD^(+)levels and nabothian c...Objective Little is known about the association between whole-blood nicotinamide adenine dinucleotide(NAD^(+))levels and nabothian cysts.This study aimed to assess the association between NAD^(+)levels and nabothian cysts in healthy Chinese women.Methods Multivariate logistic regression analysis was performed to analyze the association between NAD^(+)levels and nabothian cysts.Results The mean age was 43.0±11.5 years,and the mean level of NAD^(+)was 31.3±5.3μmol/L.Nabothian cysts occurred in 184(27.7%)participants,with single and multiple cysts in 100(15.0%)and84(12.6%)participants,respectively.The total nabothian cyst prevalence gradually decreased from37.4%to 21.6%from Q1 to Q4 of NAD^(+)and the prevalence of single and multiple nabothian cysts also decreased across the NAD^(+)quartiles.As compared with the highest NAD^(+)quartile(≥34.4μmol/L),the adjusted odds ratios with 95%confidence interval of the NAD^(+)Q1 was 1.89(1.14–3.14)for total nabothian cysts.The risk of total and single nabothian cysts linearly decreased with increasing NAD^(+)levels,while the risk of multiple nabothian cysts decreased more rapidly at NAD^(+)levels of 28.0 to35.0μmol/L.Conclusion:Low NAD^(+)levels were associated with an increased risk of total and multiple nabothian cysts.展开更多
BACKGROUND Metabolic reprogramming plays a key role in cancer progression and clinical outcomes;however,the patterns and primary regulators of metabolic reprogramming in colorectal cancer(CRC)are not well understood.A...BACKGROUND Metabolic reprogramming plays a key role in cancer progression and clinical outcomes;however,the patterns and primary regulators of metabolic reprogramming in colorectal cancer(CRC)are not well understood.AIM To explore the role of nicotinamide adenine dinucleotide phosphate oxidase 4(NOX4)in promoting progression of CRC.METHODS We evaluated the expression and function of dysregulated and survival-related metabolic genes using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes.Consensus clustering was used to cluster CRC based on dysregulated metabolic genes.A prediction model was constructed based on survival-related metabolic genes.Sphere formation,migration,invasion,proliferation,apoptosis and clone formation was used to evaluate the biological function of NOX4 in CRC.mRNA sequencing was utilized to explore the alterations of gene expression NOX4 over-expression tumor cells.In vivo subcutaneous and lung metastasis mouse tumor model was used to explore the effect of NOX4 on tumor growth.RESULTS We comprehensively analyzed 3341 metabolic genes in CRC and identified three clusters based on dysregulated metabolic genes.Among these genes,NOX4 was highly expressed in tumor tissues and correlated with worse survival.In vitro,NOX4 overexpression induced clone formation,migration,invasion,and stemness in CRC cells.Furthermore,RNA-sequencing analysis revealed that NOX4 overexpression activated the mitogen-activated protein kinase-MEK1/2-ERK1/2 signaling pathway.Trametinib,a MEK1/2 inhibitor,abolished the NOX4-mediated tumor progression.In vivo,NOX4 overexpression promoted subcutaneous tumor growth and lung metastasis,whereas trametinib treatment can reversed the metastasis.CONCLUSION Our study comprehensively analyzed metabolic gene expression and highlighted the importance of NOX4 in promoting CRC metastasis,suggesting that trametinib could be a potential therapeutic drugs of CRC clinical therapy targeting NOX4.展开更多
目的利用非代谢途径直接将外源小分子烟酰胺腺嘌呤二核苷酸磷酸(NADPH)转染进入细胞内的方法。方法对比3种不同转染试剂(X-tremeGENE TM HP DNA、Lipofectamine TM RNAiMAX和Lipofectamine TM 2000)将NADPH转染到人骨肉瘤细胞系U2OS和...目的利用非代谢途径直接将外源小分子烟酰胺腺嘌呤二核苷酸磷酸(NADPH)转染进入细胞内的方法。方法对比3种不同转染试剂(X-tremeGENE TM HP DNA、Lipofectamine TM RNAiMAX和Lipofectamine TM 2000)将NADPH转染到人骨肉瘤细胞系U2OS和小鼠胚胎成纤维细胞系3T3L1中的效果,并通过油红O染色比较它们对脂肪细胞分化的影响。结果用X-tremeGENE HP DNA转染试剂转染NADPH可以有效提高细胞内NADPH水平(P<0.001)。随着NADPH转染浓度(10μmol/L NADPH与10μL转染试剂)的增加,细胞中的NADPH水平呈剂量依赖性增加。此外使用3种转染试剂在3T3L1前脂肪细胞中转染NADPH,只有使用X-tremeGENE HP DNA转染试剂转染NADPH的脂肪细胞分化更明显(P<0.001)。结论X-tremeGENE HP DNA转染试剂能够成功地将外源NADPH转染进入细胞内,并促进3T3L1脂肪细胞的分化和脂质积累。展开更多
Nicotinamide adenine dinucleotide (NADH/NAD+) is involved in important biochemical reactions in human metabolism, including participation in energy production by mitochondria. The changes in fluorescence intensity as ...Nicotinamide adenine dinucleotide (NADH/NAD+) is involved in important biochemical reactions in human metabolism, including participation in energy production by mitochondria. The changes in fluorescence intensity as a function of time in response to blocking and releasing of blood flow in a forearm are used as a measure of oxygen transport with blood to the tissue, which directly correlates with the skin microcirculation status. In this paper, a non-invasive dynamic monitoring system based on blood flow-mediated skin fluorescence (FMSF) technology is developed to monitor the NADH fluorescence intensity of skin tissue during the process of blocking reactive hyperemia. Simultaneously, laser speckle contrast imaging (LSCI) and laser Doppler flowmetry (LDF) were used to observe blood flow, blood oxygen saturation (SOt2) and relative amount of hemoglobin (rHb) during the measurement process, which helped to explore NADH dynamics relevant physiological changes. A variety of parameters have been derived to describe NADH fluorescence curve based on the FMSF device. The experimental results are conducive to understanding the NADH measurement and the physiological processes related to it, which help FMSF to be a great avenue for in vivo physiological, clinical and pharmacological research on mitochondrial metabolism.展开更多
基金supported by the National Natural Science Foundation of China,Nos.81871024 (to HN),82301957 (to XW),82001382 (to LL),62127810 (to HN)the Natural Science Foundation of Jiangsu Province of China,No.SBK2020040785 (to LL)。
文摘Neonatal hypoxic-ischemic brain injury is the main cause of hypoxic-ischemic encephalopathy and cerebral palsy.Currently,there are few effective clinical treatments for neonatal hypoxic-ischemic brain injury.Here,we investigated the neuroprotective and molecular mechanisms of exogenous nicotinamide adenine dinucleotide,which can protect against hypoxic injury in adulthood,in a mouse model of neonatal hypoxic-ischemic brain injury.In this study,nicotinamide adenine dinucleotide(5 mg/kg)was intraperitoneally administered 30 minutes befo re surgery and every 24 hours thereafter.The results showed that nicotinamide adenine dinucleotide treatment improved body weight,brain structure,adenosine triphosphate levels,oxidative damage,neurobehavioral test outcomes,and seizure threshold in experimental mice.Tandem mass tag proteomics revealed that numerous proteins were altered after nicotinamide adenine dinucleotide treatment in hypoxic-ischemic brain injury mice.Parallel reaction monitoring and western blotting confirmed changes in the expression levels of proteins including serine(or cysteine)peptidase inhibitor,clade A,member 3N,fibronectin 1,5'-nucleotidase,cytosolic IA,microtubule associated protein 2,and complexin 2.Proteomics analyses showed that nicotinamide adenine dinucleotide ameliorated hypoxic-ischemic injury through inflammation-related signaling pathways(e.g.,nuclear factor-kappa B,mitogen-activated protein kinase,and phosphatidylinositol 3 kinase/protein kinase B).These findings suggest that nicotinamide adenine dinucleotide treatment can improve neurobehavioral phenotypes in hypoxic-ischemic brain injury mice through inflammation-related pathways.
基金Supported by Youth Independent Innovation Science Fund Project from Chinese PLA General Hospital,No.22QNFC075.
文摘Pancreatitis and pancreatic cancer(PC)stand as the most worrisome ailments affecting the pancreas.Researchers have dedicated efforts to unraveling the mechanisms underlying these diseases,yet their true nature continues to elude their grasp.Within this realm,oxidative stress is often believed to play a causal and contributory role in the development of pancreatitis and PC.Excessive accumulation of reactive oxygen species(ROS)can cause oxidative stress,and the key enzyme responsible for inducing ROS production in cells is nicotinamide adenine dinucleotide phosphate hydrogen oxides(NOX).NOX contribute to pancreatic fibrosis and inflammation by generating ROS that injure acinar cells,activate pancreatic stellate cells,and mediate macrophage polarization.Excessive ROS production occurs during malignant transformation and pancreatic carcinogenesis,creating an oxidative microenvironment that can cause abnormal apoptosis,epithelial to mesenchymal transition and genomic instability.Therefore,understanding the role of NOX in pancreatic diseases contributes to a more in-depth exploration of the exact pathogenesis of these diseases.In this review,we aim to summarize the potential roles of NOX and its mechanism in pancreatic disorders,aiming to provide novel insights into understanding the mechanisms underlying these diseases.
基金partially supported by Merit Review Award(I01RX-001964-01)from the US Department of Veterans Affairs Rehabilitation Research and Development Service(to YD)the National Natural Science Foundation of China(81501141)+1 种基金Beijing New Star of Science and Technology Program of China(xx2016061)Beijing Tongzhou District Financial Fund,and Scientific Research Common Program of Beijing Municipal Commission of Education,China(KM201610025028)(to XG)
文摘Nicotinamide adenine dinucleotide phosphate oxidase(NOX) is a multisubunit enzyme complex that utilizes nicotinamide adenine dinucleotide phosphate to produce superoxide anions and other reactive oxygen species. Under normal circumstances, reactive oxygen species mediate a number of important cellular functions, including the facilitation of adaptive immunity. In pathogenic circumstances, however,excess reactive oxygen species generated by NOX promotes apoptotic cell death. In ischemic stroke, in particular, it has been shown that both NOX activation and derangements in glucose metabolism result in increased apoptosis. Moreover, recent studies have established that glucose, as a NOX substrate, plays a vital role in the pathogenesis of reperfusion injury. Thus, NOX inhibition has the potential to mitigate the deleterious impact of hyperglycemia on stroke. In this paper, we provide an overview of this research,coupled with a discussion of its implications for the development of NOX inhibition as a strategy for the treatment of ischemic stroke. Both inhibition using apocynin, as well as the prospect of developing more specific inhibitors based on what is now understood of the biology of NOX assembly and activation, will be highlighted in the course of our discussion.
文摘Oxaliplatin, an anticancer drug commonly used to treat colorectal cancer and other tumors, has a number of serious side effects, most notably neuropathy and ototoxicity. To gain insights into its ototoxic profile, oxaliplatin was applied to rat cochlear organ cultures. Consistent with it neurotoxic propensity, oxaliplatin selectively damaged nerve fibers at a very low dose 1 μM. In contrast, the dose required to damage hair cells and spiral ganglion neurons was 50 fold higher (50 μM). Oxailiplatin-induced cochlear lesions initial-ly increased with dose, but unexpectedly decreased at very high doses. This non-linear dose response could be related to depressed oxaliplatin uptake via active transport mechanisms. Previous studies have demon-strated that axonal degeneration involves biologically active processes which can be greatly attenuated by nicotinamide adenine dinucleotide (NAD+). To determine if NAD+would protect spiral ganglion axons and the hair cells from oxaliplatin damage, cochlear cultures were treated with oxaliplatin alone at doses of 10 μM or 50 μM respectively as controls or combined with 20 mM NAD+. Treatment with 10 μM oxaliplatin for 48 hours resulted in minor damage to auditory nerve fibers, but spared cochlear hair cells. However, when cochlear cultures were treated with 10 μM oxaliplatin plus 20 mM NAD+, most auditory nerve fibers were intact. 50 μM oxaliplatin destroyed most of spiral ganglion neurons and cochlear hair cells with apop-totic characteristics of cell fragmentations. However, 50 μM oxaliplatin plus 20 mM NAD+treatment great-ly reduced neuronal degenerations and hair cell missing. The results suggested that NAD+provides signifi-cant protection against oxaliplatin-induced neurotoxicity and ototoxicity, which may be due to its actions of antioxidant, antiapoptosis, and energy supply.
文摘Recently biospecific affinity chromatography has been widely used for the separation and purification of various enzymes and nucleic acids. In this paper, a series of synthetic reactions of solid-liquid phase were carried out on silica surface, using a macroporous(30 mu m), microspherical silica (8 mu m) as the matrix and gamma-aminopropyltriethoxysilane as the activating agent, the nicotinamide adenine dinucleotide(NAD) was bonded through its amino groups to the carboxylic groups of linked phospholipid which was bonded covalently on aminated support. The bonded stationary phase has high thermal stability, and could be used to separate of nucleotides with good resolution.
文摘Nicotinamide adenine dinucleotide (NAD) oscillation was observed when the isolated mitochondria were immersed in a pyruvate solution. In addition, when an adenosine diphosphate (ADP) was added to the mitochondrial suspension containing pyruvate, adenosine triphosphate (ATP) oscillation was observed as well as NADH oscillation. At this time, the pH within mitochondria also oscillated. It was found that the oscillatory reaction of NADH caused by the membrane permeation of pyruvate continues, causing the oscillation of NADH and H+ in the subsequent reactions. The pH oscillation led to the ATP oscillation. It is considered that the oscillatory reaction caused by the gradual entry of pyruvate into mitochondria was thought to be carried over to both the citric acid cycle and the respiratory chain, ultimately leading to the ATP oscillation in oxidative phosphorylation. Similarly, it was found that membrane permeation of malate causes the gradual occurrence of NADH, at which point NADH oscillates, followed by an oscillatory reaction of the respiratory chain, and finally ATP oscillation. It was found that the oscillations of NADH and ATP occur without going through the citric acid cycle. Oscillations of NADH and other intermediates in both the citric acid cycle and respiratory chain were also confirmed by experiments using semipermeable membranes. These results support our hypothesis that the gradual entry of the substrate by membrane permeation triggers an oscillatory reaction of the enzyme, which is also carried over to subsequent reactions.
基金National Science Foundation of Anhui Province(No.2108085J08)the University Synergy Innovation Program of Anhui Province(No.GXXT-2021-023)the technical support of high-performance computing platform of Anhui University.
文摘The redox property of the ultrasmall coinage nanoclusters(with several to tens of Au/Ag atoms)has elucidated the electrontransfer capacity of nanoclusters,has been successfully utilized in a variety of redox conversions(such as from CO_(2)to CO).Nevertheless,their biological applications are mainly restricted by the scarcity of atomically precise,water-soluble metal nanoclusters,the limited application(mainly on the decomposition of H_(2)O_(2)in these days).Herein,mercaptosuccinic acid(MSA)protected ultrasmall alloy AuAg nanoclusters were prepared,the main product was determined[Au_(3)Ag_(5)(MSA)_(3)]−by electrospray ionization mass spectrometry(ESI-MS).The clusters can not only mediate the decomposition of H_(2)O_(2)to generate hydroxyl radicals,but is also able to mediate the reduction of nicotinamide adenine dinucleotide(NAD)to its reduced form of NADH.This is the first time that the atomically precise metal nanoclusters were used to mediate the coenzyme reduction.The preliminary mechanistic insights imply the reaction to be driven by the hydrogen bonding between the carboxylic groups(on the surface of MSA)and the amino N–H bonds(on NAD).In this context,the presence of the carboxylic groups,the sub-nanometer size regime(~1 nm),the synergistic effect of the Au-Ag clusters are pre-requisite to the NAD reduction.
基金supported by grants from the NSFC-Regional Innovation and Development Joint Fund(No.U22A20364)the National Key R&D Program of China(No.2021YFC2500500)the National Natural Science Foundation of China(No.81973112,No.92049302)。
文摘Objective Little is known about the association between whole-blood nicotinamide adenine dinucleotide(NAD^(+))levels and nabothian cysts.This study aimed to assess the association between NAD^(+)levels and nabothian cysts in healthy Chinese women.Methods Multivariate logistic regression analysis was performed to analyze the association between NAD^(+)levels and nabothian cysts.Results The mean age was 43.0±11.5 years,and the mean level of NAD^(+)was 31.3±5.3μmol/L.Nabothian cysts occurred in 184(27.7%)participants,with single and multiple cysts in 100(15.0%)and84(12.6%)participants,respectively.The total nabothian cyst prevalence gradually decreased from37.4%to 21.6%from Q1 to Q4 of NAD^(+)and the prevalence of single and multiple nabothian cysts also decreased across the NAD^(+)quartiles.As compared with the highest NAD^(+)quartile(≥34.4μmol/L),the adjusted odds ratios with 95%confidence interval of the NAD^(+)Q1 was 1.89(1.14–3.14)for total nabothian cysts.The risk of total and single nabothian cysts linearly decreased with increasing NAD^(+)levels,while the risk of multiple nabothian cysts decreased more rapidly at NAD^(+)levels of 28.0 to35.0μmol/L.Conclusion:Low NAD^(+)levels were associated with an increased risk of total and multiple nabothian cysts.
基金Supported by Henan Province Medical Science and Technology Research Provincial and Ministry Co-constructed Projects,No.SBGJ202101010Major Public Welfare Projects in Henan Province,No.201300310400+1 种基金Joint Construction Project of Henan Medical Science and Technology Research Plan,No.LHGJ20220050Major Science and Technology Project of Henan Province,No.221100310100.
文摘BACKGROUND Metabolic reprogramming plays a key role in cancer progression and clinical outcomes;however,the patterns and primary regulators of metabolic reprogramming in colorectal cancer(CRC)are not well understood.AIM To explore the role of nicotinamide adenine dinucleotide phosphate oxidase 4(NOX4)in promoting progression of CRC.METHODS We evaluated the expression and function of dysregulated and survival-related metabolic genes using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes.Consensus clustering was used to cluster CRC based on dysregulated metabolic genes.A prediction model was constructed based on survival-related metabolic genes.Sphere formation,migration,invasion,proliferation,apoptosis and clone formation was used to evaluate the biological function of NOX4 in CRC.mRNA sequencing was utilized to explore the alterations of gene expression NOX4 over-expression tumor cells.In vivo subcutaneous and lung metastasis mouse tumor model was used to explore the effect of NOX4 on tumor growth.RESULTS We comprehensively analyzed 3341 metabolic genes in CRC and identified three clusters based on dysregulated metabolic genes.Among these genes,NOX4 was highly expressed in tumor tissues and correlated with worse survival.In vitro,NOX4 overexpression induced clone formation,migration,invasion,and stemness in CRC cells.Furthermore,RNA-sequencing analysis revealed that NOX4 overexpression activated the mitogen-activated protein kinase-MEK1/2-ERK1/2 signaling pathway.Trametinib,a MEK1/2 inhibitor,abolished the NOX4-mediated tumor progression.In vivo,NOX4 overexpression promoted subcutaneous tumor growth and lung metastasis,whereas trametinib treatment can reversed the metastasis.CONCLUSION Our study comprehensively analyzed metabolic gene expression and highlighted the importance of NOX4 in promoting CRC metastasis,suggesting that trametinib could be a potential therapeutic drugs of CRC clinical therapy targeting NOX4.
文摘目的利用非代谢途径直接将外源小分子烟酰胺腺嘌呤二核苷酸磷酸(NADPH)转染进入细胞内的方法。方法对比3种不同转染试剂(X-tremeGENE TM HP DNA、Lipofectamine TM RNAiMAX和Lipofectamine TM 2000)将NADPH转染到人骨肉瘤细胞系U2OS和小鼠胚胎成纤维细胞系3T3L1中的效果,并通过油红O染色比较它们对脂肪细胞分化的影响。结果用X-tremeGENE HP DNA转染试剂转染NADPH可以有效提高细胞内NADPH水平(P<0.001)。随着NADPH转染浓度(10μmol/L NADPH与10μL转染试剂)的增加,细胞中的NADPH水平呈剂量依赖性增加。此外使用3种转染试剂在3T3L1前脂肪细胞中转染NADPH,只有使用X-tremeGENE HP DNA转染试剂转染NADPH的脂肪细胞分化更明显(P<0.001)。结论X-tremeGENE HP DNA转染试剂能够成功地将外源NADPH转染进入细胞内,并促进3T3L1脂肪细胞的分化和脂质积累。
文摘Nicotinamide adenine dinucleotide (NADH/NAD+) is involved in important biochemical reactions in human metabolism, including participation in energy production by mitochondria. The changes in fluorescence intensity as a function of time in response to blocking and releasing of blood flow in a forearm are used as a measure of oxygen transport with blood to the tissue, which directly correlates with the skin microcirculation status. In this paper, a non-invasive dynamic monitoring system based on blood flow-mediated skin fluorescence (FMSF) technology is developed to monitor the NADH fluorescence intensity of skin tissue during the process of blocking reactive hyperemia. Simultaneously, laser speckle contrast imaging (LSCI) and laser Doppler flowmetry (LDF) were used to observe blood flow, blood oxygen saturation (SOt2) and relative amount of hemoglobin (rHb) during the measurement process, which helped to explore NADH dynamics relevant physiological changes. A variety of parameters have been derived to describe NADH fluorescence curve based on the FMSF device. The experimental results are conducive to understanding the NADH measurement and the physiological processes related to it, which help FMSF to be a great avenue for in vivo physiological, clinical and pharmacological research on mitochondrial metabolism.