β-TCP, as one of calcium phosphates ceramics, exerts perfect biocompatibility and osteoconductivity, and is clinically used as a bone graft substitute for decades. Consequently, the effects of β-TCP ceramics on intr...β-TCP, as one of calcium phosphates ceramics, exerts perfect biocompatibility and osteoconductivity, and is clinically used as a bone graft substitute for decades. Consequently, the effects of β-TCP ceramics on intracellular Ca2+ concentration, mineralization of osteoblast and BSA protein structure were studied. Results showed that β-TCP could increase the intracelluar Ca2+ concentration and mineralization of osteoblast, indicating that β-TCP ceramics could take part in the organic metabolism and the degradation product had no detrimental effect on osteoblast in vitro. Furthermore, β-TCP ceramics could increase the content of α-helix and β-pleated sheet and change BSA into more ordering structure, those changes might be favorable for the biomineralization after β-TCP ceramics implanted.展开更多
β-TCP ceramics drug carrier was first prepared and characterized. SEM showed that β-TCP carrier was in porous amorphous structure with diameters around 10 μm. The physical properties including apparent porosity, vo...β-TCP ceramics drug carrier was first prepared and characterized. SEM showed that β-TCP carrier was in porous amorphous structure with diameters around 10 μm. The physical properties including apparent porosity, volume-weight, tensile strength and the permeability were measured and the results indicated those properties fit the clinical usage of β-TCP drug carrier. Furthermore, drug release experiment in vitro showed that the carrier could prolong drug release in simulated body fluid which provides basis for the clinical use of β-TCP ceramics as drug carrier.展开更多
After co-cultrured osteoblast with fl-TCP ceramics, the cellular proliferating, mineralization and osteocalcin expression were studied. MTT assay showed that fl-TCP ceramics had no affect on cellular proliferating. La...After co-cultrured osteoblast with fl-TCP ceramics, the cellular proliferating, mineralization and osteocalcin expression were studied. MTT assay showed that fl-TCP ceramics had no affect on cellular proliferating. Laser scanning confocal detection showed that fl-TCP ceramics could increase the mineralization level of osteoblast. Furthermore, RT-PCR showed that fl-TCP could increase the expression level of osteocalcin. Those results indicate β-TCP ceramics had perfect biocompatibility and increased the mineralization of osteoblast to accelerate osteogenesis by means of affecting the expression of genes involving in osteogeneticprocess.展开更多
The osteoblast with the β-TCP ceramic was co-cultured. Scanning electron microscopy shows the cells adhered onto β-TCP ceramic surface and grew better, proving the β-TCP ceramic has a biocompatible property. The Co...The osteoblast with the β-TCP ceramic was co-cultured. Scanning electron microscopy shows the cells adhered onto β-TCP ceramic surface and grew better, proving the β-TCP ceramic has a biocompatible property. The Coomassie brilliant blue G-250 stain shows that the total protein in the experimental groups was highly increased compared with the control group (p〈0.05). Flow-cytometric analysis shows that β-TCP ceramic could promote the osteoblast transform from the G0/G1 phase to S phase. Those all demonstrate the product of the degradation of the β-TCP ceramic may take part in the protein metabolism of osteoblast.展开更多
To study the new bone formation in the bone defect area after implantation, the tetracycline tracing method was used. The results show that new bone formed in 1 month, and the formation rate of new bone was very high ...To study the new bone formation in the bone defect area after implantation, the tetracycline tracing method was used. The results show that new bone formed in 1 month, and the formation rate of new bone was very high (8.164μm/day),considerably faster than that of control groups (3.219μm/day).The new bone grew up quickly and β-TCP particles were surrounded by double fluorescence bands which became more obvious. The new bone formation rate was maximal at 2 months, and then gradually reduced. The rate was steady at 4 months, and then reduced to resembling as the normal physiologic metabolism of bone, which indicated the implanted materials were completely replaced by bone. Calcium phosphate materials had the ability of osteoconduction.展开更多
The metabolic way of calcium ions which was released due to in vivo degradation of porous β TCP ceramics was studied by using the radioisotope 45 Ca as tracer. The result shows that some of the calcium ions enter blo...The metabolic way of calcium ions which was released due to in vivo degradation of porous β TCP ceramics was studied by using the radioisotope 45 Ca as tracer. The result shows that some of the calcium ions enter blood and take part in the circulation. These calcium ions distribute into organs and tissues (such as liver, kidney, brain, heart, lung, spleen and stomach) and participate in the metabolisms of body. There is neither the accumulation of calcium ions, nor the lesion or pathologic calcification of the organs and tissues. Some of the calcium ions that enter the near end femur, ulna and skull are reused by bony tissue to take part in both local mineralization processes during bone healing, or are stored in calcium pool which can participate in the whole body circulating. In the cyclical process, other calcium ions are excreted with urine and feces through kidney and liver. It is indicated that the degradation products of β TCP ceramics can take part in the physiological metabolic process of normal bone and tissue.展开更多
Minimum quantity Lubrication(MQL)is a sustainable lubrication system that is famous in many machining systems.It involve the spray of an infinitesimal amount of mist-like lubricants during machining processes.The MQL ...Minimum quantity Lubrication(MQL)is a sustainable lubrication system that is famous in many machining systems.It involve the spray of an infinitesimal amount of mist-like lubricants during machining processes.The MQL system is affirmed to exhibit an excellent machining performance,and it is highly economical.The nanofluids are understood to exhibit excellent lubricity and heat evacuation capability,compared to pure oil-based MQL system.Studies have shown that the surface quality and amount of energy expended in the grinding operations can be reduced considerably due to the positive effect of these nanofluids.This work presents an experimental study on the tribological performance of SiO_(2)nanofluid during grinding of Si_(3)N_(4)ceramic.The effect different grinding modes and lubrication systems during the grinding operation was also analyzed.Different concentrations of the SiO_(2)nanofluid was manufactured using canola,corn and sunflower oils.The quantitative evaluation of the grinding process was done based on the amount of grinding forces,specific grinding energy,frictional coefficient,and surface integrity.It was found that the canola oil exhibits optimal lubrication performance compared to corn oil,sunflower oil,and traditional lubrication systems.Additionally,the introduction of ultrasonic vibrations with the SiO_(2)nanofluid in MQL system was found to reduce the specific grinding energy,normal grinding forces,tangential grinding forces,and surface roughness by 65%,57%,65%,and 18%respectively.Finally,regression analysis was used to obtain an optimum parameter combinations.The observations from this work will aid the smooth transition towards ecofriendly and sustainable machining of engineering ceramics.展开更多
The 0.98(K_(0.5)Na_(0.5))NbO_(3)-0.02Ba(Nb_(0.5)Co_(0.5))O_(3-δ) ceramics with doped Ba^(2+) and Co^(2+) ions are fabricated,and the impacts of the thermal process are studied.Compared with the rapidly cooled (RC) sa...The 0.98(K_(0.5)Na_(0.5))NbO_(3)-0.02Ba(Nb_(0.5)Co_(0.5))O_(3-δ) ceramics with doped Ba^(2+) and Co^(2+) ions are fabricated,and the impacts of the thermal process are studied.Compared with the rapidly cooled (RC) sample,the slowly cooled (SC) sample possesses superior dielectric and ferroelectric properties,and an 11 K higher ferroelectricparaelectric phase transition temperature,which can be attributed to the structural characteristics such as the grain size and the degree of anisotropy.Heat treatment can reversibly modulate the content of the oxygen vacancies,and in turn the ferroelectric hysteresis loops of the samples.Finally,robust and tunable ferroelectric property is achieved in SC samples with good structural integrity.展开更多
Lanthanide(Ln^(3+))based ferroelectric phosphors,with an integration of PL emission and ferroelectric effect,are unveiling an exciting realm of possibilities for multifunctional ferroelectric-optic materials.However,h...Lanthanide(Ln^(3+))based ferroelectric phosphors,with an integration of PL emission and ferroelectric effect,are unveiling an exciting realm of possibilities for multifunctional ferroelectric-optic materials.However,how the ferroelectric host enables the tuning on the PL emissions through modulating the local structure(e.g.,lattice site,symmetry,strains etc.)of the Ln^(3+)activator is not established yet.In this work,a luminescent-ferroelectric material,i.e.Dy^(3+)doped BaTiO_(3) ceramic(Ba_(1–x)Dy_(x)TiO_(3)(x=0–0.07),abbr:BTO:Dy^(3+)),was explored to address the aforementioned issues.The BTO:Dy^(3+)ceramics were synthesized by a solid-state reaction method.The crystal structure,photoluminescence(PL)and electric properties(dielectric constant,ferroelectric hysteresis and piezoelectric hysteresis loop)were systematically investigated.The BTO:Dy^(3+)ceramics show two predominant emission peaks,corresponding to the blue magnetic dipole transition(477 nm,4F_(7/2)→6H_(15/2))and yellow electric dipole transition(573 nm,4F_(7/2)→6H_(13/2)),the intensity ration of which can be modulated by the ferroelectric polarization that causes the slight lattice deformation.Such a polarization-emission modulation combining with the Dy3+doping could accelerate the color change,from yellow to blue,which is characterized to detect the phase transition,with a method and mechanism were proposed,that is,the phase change is reflected by the PL characteristic peak intensity ratio.Therefore,the current results offer a convenient photoluminescence method for detecting the ferroelectric phase transition and a feasible approach to study the interaction between the photoluminescence and polarization in ferroelectric materials,for providing new insights for the development of multifunctional materials.展开更多
A series of spinel-type Mg_(0.25-x)Al_(2.57)O_(3.79)N_(0.21):xMn^(2+)(MgAlON:xMn^(2+))phosphors were synthesized by the solid-state reaction route.The transparent ceramic phosphors were fabricated by pressureless sint...A series of spinel-type Mg_(0.25-x)Al_(2.57)O_(3.79)N_(0.21):xMn^(2+)(MgAlON:xMn^(2+))phosphors were synthesized by the solid-state reaction route.The transparent ceramic phosphors were fabricated by pressureless sintering followed by hot-isostatic pressing(HIP).The crystal structure,luminescence and mechanical properties of the samples were systematically investigated.The transparent ceramic phosphors with tetrahedrally coordinated Mn^(2+)show strong green emission centered around 515 nm under blue light excitation.As the Mn^(2+)concentration increases,the crystal lattice expands slightly,resulting in a variation of crystal field and a slight red-shift of green emission peak.Six weak absorption peaks in the transmittance spectra originate from the spin-forbidden ^(4)T_(1)(^(4)G)→^(6)A_(1) transition of Mn^(2+).The decay time was found to decrease from 5.66 to 5.16 ms with the Mn^(2+)concentration.The present study contributes to the systematic understanding of crystal structure and properties of MgAlON:xMn^(2+)green-emitting transparent ceramic phosphor which has a potential application in high-power light-emitting diodes.展开更多
The anomalous photovoltaic(APV)effect is promising for high-performance ferroelectric materials and devices in photoelectric applications.However,it is a challenge how to tune the APV effect by utilizing the character...The anomalous photovoltaic(APV)effect is promising for high-performance ferroelectric materials and devices in photoelectric applications.However,it is a challenge how to tune the APV effect by utilizing the characteristic structure of ferroelectrics.Here,a domain engineering strategy is proposed to enhance the APV effect in lead-free 0.88(Na_(0.5)Bi_(0.5)TiO_(3))-0.12(Ba_(1–1.5x)S_(mx)TiO_(3))(NBT-BST)ferroelectric ceramics.By tuning the domain size based on Sm^(3+)doping,a maximum open-circuit voltage(VOC)of 18.1 V is obtained when Sm^(3+)content is 0.75%,which is much larger than its bandgap(Eg).The mechanism of this large VOC originates from the multiple positive effects induced by the small-size domain,where decreasing domain size enhances ferroelectric polarization and net interface barrier potential,leading to a large driving electric field.Moreover,the APV effect exhibits a giant temperature sensitivity due to the dramatic evolution of small-size domain in the temperature field.This work sheds light on the exploration of ferroelectrics with APV effect and inspires their future high-performance optoelectronic device applications.展开更多
High-field strain and its temperature stability of(1-x)K_(0.48)Na_(0.52)Nb_(0.96)Ta_(0.04)O_(3)-xBaZrO_(3)+8%MnO+3%ZrO_(2)(in mole,KNNT-xBZ+8Mn)ceramics sintered in reducing atmosphere are improved simultaneously via ...High-field strain and its temperature stability of(1-x)K_(0.48)Na_(0.52)Nb_(0.96)Ta_(0.04)O_(3)-xBaZrO_(3)+8%MnO+3%ZrO_(2)(in mole,KNNT-xBZ+8Mn)ceramics sintered in reducing atmosphere are improved simultaneously via defect design in A and B site.There is a conducting type transition from n-type to p-type at x=0.07.The BaZrO_(3) dopant not only induces the increase of defects(Zr′_(Nb),Ba_(Na),Ba_(K))concentration,but also results in the increase of defect(Mn″_(Nb))concentration,because more Mn ions as+2 oxidation state in ceramics is triggered by BaZrO3 doping modifcation.Defect dipoles(Mn″_(Nb)-V_(o),Zr′_(Nb)-V_(o),Ba_(Na)-V′_(Na),Ba_(Na)-V′_(Na))in poled and aged ceramics enhance the reversibility of the non-180°domains switching,which increases the high-field strain of KNNT-xBZ+8Mn ceramics.The reversibility of non-180°domain switching can be preserved to high temperature due to stable defect dipoles(Ba_(Na)-V′_(Na),Ba_(K)-V′_(K))in A-site.The KNNT-xBZ+8Mn ceramics at x=0.07 show the largest high-field strain coefficient(543 pm/V@20 kV/cm)and the highest temperature stability(125℃).The KNNT-xBZ+8Mn ceramic is a lead-free material with great potential to be applied in the fabrication of multilayer ceramic actuators with Ni inner electrodes in the future.展开更多
Under illumination by 405,520 and 655 nm monochromatic visible light(light intensity of 30 kW/m^(2)),large photostriction(ΔL/L)of 0.19%,0.13%and 0.26%for 67BiFeO_(3)-33BaTiO_(3)(67BF-33BT)lead-free ferroelectric cera...Under illumination by 405,520 and 655 nm monochromatic visible light(light intensity of 30 kW/m^(2)),large photostriction(ΔL/L)of 0.19%,0.13%and 0.26%for 67BiFeO_(3)-33BaTiO_(3)(67BF-33BT)lead-free ferroelectric ceramics are obtained,respectively.By studying the ferroelectric and photoelectric properties in conjunction with in situ Raman spectroscopy,it is found that the photostrictive effect of 67BF-33BT is not caused by the electrical strain induced by abnormal photovoltaic voltage,but related to the optical induced oxygen octahedral distortion.The 67BF-33BT lead-free ferroelectric material with excellent photostrictive response in the visible light region is expected to play an important role in the field of optical drive electromechanical devices.展开更多
Industrial wastes such as steel slag and coal gangue etc.were chosen as raw materials for preparing ceramic via the conventional solid-state reaction method.With steel slag and coal gangue mixed in various mass ratios...Industrial wastes such as steel slag and coal gangue etc.were chosen as raw materials for preparing ceramic via the conventional solid-state reaction method.With steel slag and coal gangue mixed in various mass ratios,from 100%steel slag to 100%coal gangue at 10%intervals,microstructure and possible phase evolution of the coal gangue-steel slag ceramics were investigated using X-ray powder diffraction,scanning electron microscopy,mercury intrusion porosimetry and Archimedes boiling method.The experimental results suggest that the phase compositions of the as-prepared ceramics could be altered with the increased amount of coal gangue in the ceramics.The anorthite-diopside eutectic can be formed in the ceramics with the mass ratios of steel slag to coal gangue arranged from 8:2 to 2:8,which was responsible for the melting of the steel slag-coal gangue ceramics at relatively high temperature.Further investigations on the microstructure suggested that the addition of the proper amount of steel slag in ceramic compositions was conducive to the pore formation and further contributed to an increment in porosity.展开更多
Reversible protonic ceramic cells(RePCCs)hold promise for efficient energy storage,but their practicality is hindered by a lack of high-performance air electrode materials.Ruddlesden-Popper perovskite Sr_(3)Fe_(2)O_(7...Reversible protonic ceramic cells(RePCCs)hold promise for efficient energy storage,but their practicality is hindered by a lack of high-performance air electrode materials.Ruddlesden-Popper perovskite Sr_(3)Fe_(2)O_(7−δ)(SF)exhibits superior proton uptake and rapid ionic conduction,boosting activity.However,excessive proton uptake during RePCC operation degrades SF’s crystal structure,impacting durability.This study introduces a novel A/B-sites co-substitution strategy for modifying air electrodes,incorporating Sr-deficiency and Nb-substitution to create Sr_(2.8)Fe_(1.8)Nb_(0.2)O_(7−δ)(D-SFN).Nb stabilizes SF’s crystal,curbing excessive phase formation,and Sr-deficiency boosts oxygen vacancy concentration,optimizing oxygen transport.The D-SFN electrode demonstrates outstanding activity and durability,achieving a peak power density of 596 mW cm^(−2)in fuel cell mode and a current density of−1.19 A cm^(−2)in electrolysis mode at 1.3 V,650℃,with excellent cycling durability.This approach holds the potential for advancing robust and efficient air electrodes in RePCCs for renewable energy storage.展开更多
The urgent need for integrated molding and sintering across various industries has inspired the development of additive manu-facturing(AM)ceramics.Among the different AM technologies,direct laser additive manufacturin...The urgent need for integrated molding and sintering across various industries has inspired the development of additive manu-facturing(AM)ceramics.Among the different AM technologies,direct laser additive manufacturing(DLAM)stands out as a group of highly promising technology for flexibly manufacturing ceramics without molds and adhesives in a single step.Over the last decade,sig-nificant and encouraging progress has been accomplished in DLAM of high-performance ceramics,including Al_(2)O_(3),ZrO_(2),Al_(2)O_(3)/ZrO_(2),SiC,and others.However,high-performance ceramics fabricated by DLAM face challenges such as formation of pores and cracks and resultant low mechanical properties,hindering their practical application in high-end equipment.Further improvements are necessary be-fore they can be widely adopted.Methods such as field-assisted techniques and post-processing can be employed to address these chal-lenges,but a more systematic review is needed.This work aims to critically review the advancements in direct selective laser sintering/melting(SLS/SLM)and laser directed energy deposition(LDED)for various ceramic material systems.Additionally,it provides an overview of the current challenges,future research opportunities,and potential applications associated with DLAM of high-perform-ance ceramics.展开更多
Ceramic matrix composites(CMCs)are highly promising materials for the next generation of aero-engines.However,machining of CMCs suffers from low efficiency and poor surfacefinish,which presents an obstacle to their wide...Ceramic matrix composites(CMCs)are highly promising materials for the next generation of aero-engines.However,machining of CMCs suffers from low efficiency and poor surfacefinish,which presents an obstacle to their wider application.To overcome these problems,this study investigates high-efficiency deep grinding of CMCs,focusing on the effects of grinding depth.The results show that both the sur-face roughness and the depth of subsurface damage(SSD)are insensitive to grinding depth.The material removal rate can be increased sixfold by increasing the grinding depth,while the surface roughness and SSD depth increase by only about 10%.Moreover,it is found that the behavior of material removal is strongly dependent on grinding depth.As the grinding depth is increased,fibers are removed in smaller sizes,with thefiber length in chips being reduced by about 34%.However,too large a grinding depth will result in blockage by chip powder,which leads to a dramatic increase in the ratio of tangential to normal grinding forces.This study demonstrates that increasing the depth of cut is an effective approach to improve the machining efficiency of CMCs,while maintaining a good surfacefin-ish.It provides the basis for the further development of high-performance grinding methods for CMCs,which should facilitate their wider application.展开更多
Due to the push for carbon neutrality in various human activities,the development of methods for producing electricity without relying on chemical reaction processes or heat sources has become highly significant.Also,...Due to the push for carbon neutrality in various human activities,the development of methods for producing electricity without relying on chemical reaction processes or heat sources has become highly significant.Also,the challenge lies in achieving microwatt-scale outputs due to the inherent conductivity of the materials and diverting electric currents.To address this challenge,our research has concentrated on utilizing nonconductive mediums for water-based low-cost microfibrous ceramic wools in conjunction with a NaCl aqueous solution for power generation.The main source of electricity originates from the directed movement of water molecules and surface ions through densely packed microfibrous ceramic wools due to the effect of dynamic electric double layer.This occurrence bears resemblance to the natural water transpiration in plants,thereby presenting a fresh and straightforward approach for producing electricity in an ecofriendly manner.The generator module demonstrated in this study,measuring 12×6 cm^(2),exhibited a noteworthy open-circuit voltage of 0.35 V,coupled with a short-circuit current of 0.51 mA.Such low-cost ceramic wools are suitable for ubiquitous,permanent energy sources and hold potential for use as self-powered sensors and systems,eliminating the requirement for external energy sources such as sunlight or heat.展开更多
Laser phosphor display technology plays an important role in advanced display projection;however,it is a challenge in maintaining excellent color accuracy under high brightness due to the lack of red spectrum.Here,red...Laser phosphor display technology plays an important role in advanced display projection;however,it is a challenge in maintaining excellent color accuracy under high brightness due to the lack of red spectrum.Here,red-emitting Mg_(2)Al_(4)Si_(5)O_(18):Eu^(2+)ceramics as the phosphor wheel have been optimized in chemical compositions and texture orientation.The textured Mg_(2)Al_(4)Si_(5)O_(18):Eu^(2+)ceramics have high transparency and spot limiting ability,accordingly,the ceramic wheel outputs 1,184 lm of ultra-bright red light under 50 W/mm^(2) laser power density.Moreover,the red spectral utilization(over 600 nm)of textured Mg_(2)Al_(4)Si_(5)O_(18):Eu^(2+)ceramics is 2.17 times that of traditional Y3Al5O12:Ce^(3+)phosphor wheel.The red-emitting textured Mg_(2)Al_(4)Si_(5)O_(18):Eu^(2+)cordierite ceramic herein enables an improved light-color saturation experience,and it is potential in the next-generation laser phosphor display applications.展开更多
ZrB_(2)-based ceramics typically necessitate high temperature and pressure for sintering,whereas ZrB_(2)-SiC ceramics can be fabricated at 1500℃using the process of reactive melt infiltration with Si.In comparison to...ZrB_(2)-based ceramics typically necessitate high temperature and pressure for sintering,whereas ZrB_(2)-SiC ceramics can be fabricated at 1500℃using the process of reactive melt infiltration with Si.In comparison to the conventional preparation method,reactive synthesis allows for the more facile production of ultra-high temperature ceramics with fine particle size and homogeneous composition.In this work,ZrSi_(2),B4C,and C were used as raw materials to prepare ZrB_(2)-SiC via combination of tape casting and reactive melt infiltration herein referred to as ZBC ceramics.Control sample of ZrB_(2)-SiC was also prepared using ZrB_(2) and SiC as raw materials through an identical process designated as ZS ceramics.Microscopic analysis of both ceramic groups revealed smaller and more uniformly distributed particles of the ZrB_(2) phase in ZBC ceramics compared to the larger particles in ZS ceramics.Both sets of ceramics underwent cyclic oxidation testing in the air at 1600℃for a cumulative duration of 5 cycles,each cycle lasting 2 h.Analysis of the oxidation behavior showed that both ZBC ceramics and ZS ceramics developed a glassy SiO_(2)-ZrO_(2) oxide layer on their surfaces during the oxidation.This layer severed as a barrier against oxygen.In ZBC ceramics,ZrO_(2) is finely distributed in SiO_(2),whereas in ZS ceramics,larger ZrO_(2) particles coexist with glassy SiO_(2).The surface oxide layer of ZBC ceramics maintains a dense structure because the well-dispersed ZrO_(2) increases the viscosity of glassy SiO_(2),preventing its crystallization during the cooling.Conversely,some SiO_(2) in the oxide layer of ZS ceramics may crystallize and form a eutectic with ZrO_(2),leading to the formation of ZrSiO_(4).This leads to cracking of the oxide layer due to differences in thermal expansion coefficients,weakening its barrier effect.An analysis of the oxidation resistance shows that ZBC ceramics exhibit less increase in oxide layer thickness and mass compared to ZS ceramics,suggesting superior oxidation resistance of ZBC ceramics.展开更多
基金Funded by the Research Fund of Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province (AE201037)the Foundation for Talent Recruitment of Yancheng Institute of Technology (XKR2011007)"973" Chinese National Key Fundamental Research and Development Program (No.G1999064701)
文摘β-TCP, as one of calcium phosphates ceramics, exerts perfect biocompatibility and osteoconductivity, and is clinically used as a bone graft substitute for decades. Consequently, the effects of β-TCP ceramics on intracellular Ca2+ concentration, mineralization of osteoblast and BSA protein structure were studied. Results showed that β-TCP could increase the intracelluar Ca2+ concentration and mineralization of osteoblast, indicating that β-TCP ceramics could take part in the organic metabolism and the degradation product had no detrimental effect on osteoblast in vitro. Furthermore, β-TCP ceramics could increase the content of α-helix and β-pleated sheet and change BSA into more ordering structure, those changes might be favorable for the biomineralization after β-TCP ceramics implanted.
基金Funded by the "973" Chinese National Key Fundamental Research and Development Program (No.G1999064701)the Research Fund of Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province (AE201037)
文摘β-TCP ceramics drug carrier was first prepared and characterized. SEM showed that β-TCP carrier was in porous amorphous structure with diameters around 10 μm. The physical properties including apparent porosity, volume-weight, tensile strength and the permeability were measured and the results indicated those properties fit the clinical usage of β-TCP drug carrier. Furthermore, drug release experiment in vitro showed that the carrier could prolong drug release in simulated body fluid which provides basis for the clinical use of β-TCP ceramics as drug carrier.
基金the Research Fund of Key Labortary for Advanced Technology in Environmental Protection of Jiangsu Province (No. AE201037)the Foundation for Talent Recruitment of Yancheng Institute of Technology (No. XKR2011007)the "973" Chinese National Key Fundamental Research and Development Program (No. G1999064701)
文摘After co-cultrured osteoblast with fl-TCP ceramics, the cellular proliferating, mineralization and osteocalcin expression were studied. MTT assay showed that fl-TCP ceramics had no affect on cellular proliferating. Laser scanning confocal detection showed that fl-TCP ceramics could increase the mineralization level of osteoblast. Furthermore, RT-PCR showed that fl-TCP could increase the expression level of osteocalcin. Those results indicate β-TCP ceramics had perfect biocompatibility and increased the mineralization of osteoblast to accelerate osteogenesis by means of affecting the expression of genes involving in osteogeneticprocess.
基金Funded by the "973" Chinese National Key Fundamental Research and Development Program (No.G1999064701)Key Technologies R&D Program of Hubei Province (No.2004AA303B03)
文摘The osteoblast with the β-TCP ceramic was co-cultured. Scanning electron microscopy shows the cells adhered onto β-TCP ceramic surface and grew better, proving the β-TCP ceramic has a biocompatible property. The Coomassie brilliant blue G-250 stain shows that the total protein in the experimental groups was highly increased compared with the control group (p〈0.05). Flow-cytometric analysis shows that β-TCP ceramic could promote the osteoblast transform from the G0/G1 phase to S phase. Those all demonstrate the product of the degradation of the β-TCP ceramic may take part in the protein metabolism of osteoblast.
文摘To study the new bone formation in the bone defect area after implantation, the tetracycline tracing method was used. The results show that new bone formed in 1 month, and the formation rate of new bone was very high (8.164μm/day),considerably faster than that of control groups (3.219μm/day).The new bone grew up quickly and β-TCP particles were surrounded by double fluorescence bands which became more obvious. The new bone formation rate was maximal at 2 months, and then gradually reduced. The rate was steady at 4 months, and then reduced to resembling as the normal physiologic metabolism of bone, which indicated the implanted materials were completely replaced by bone. Calcium phosphate materials had the ability of osteoconduction.
文摘The metabolic way of calcium ions which was released due to in vivo degradation of porous β TCP ceramics was studied by using the radioisotope 45 Ca as tracer. The result shows that some of the calcium ions enter blood and take part in the circulation. These calcium ions distribute into organs and tissues (such as liver, kidney, brain, heart, lung, spleen and stomach) and participate in the metabolisms of body. There is neither the accumulation of calcium ions, nor the lesion or pathologic calcification of the organs and tissues. Some of the calcium ions that enter the near end femur, ulna and skull are reused by bony tissue to take part in both local mineralization processes during bone healing, or are stored in calcium pool which can participate in the whole body circulating. In the cyclical process, other calcium ions are excreted with urine and feces through kidney and liver. It is indicated that the degradation products of β TCP ceramics can take part in the physiological metabolic process of normal bone and tissue.
文摘Minimum quantity Lubrication(MQL)is a sustainable lubrication system that is famous in many machining systems.It involve the spray of an infinitesimal amount of mist-like lubricants during machining processes.The MQL system is affirmed to exhibit an excellent machining performance,and it is highly economical.The nanofluids are understood to exhibit excellent lubricity and heat evacuation capability,compared to pure oil-based MQL system.Studies have shown that the surface quality and amount of energy expended in the grinding operations can be reduced considerably due to the positive effect of these nanofluids.This work presents an experimental study on the tribological performance of SiO_(2)nanofluid during grinding of Si_(3)N_(4)ceramic.The effect different grinding modes and lubrication systems during the grinding operation was also analyzed.Different concentrations of the SiO_(2)nanofluid was manufactured using canola,corn and sunflower oils.The quantitative evaluation of the grinding process was done based on the amount of grinding forces,specific grinding energy,frictional coefficient,and surface integrity.It was found that the canola oil exhibits optimal lubrication performance compared to corn oil,sunflower oil,and traditional lubrication systems.Additionally,the introduction of ultrasonic vibrations with the SiO_(2)nanofluid in MQL system was found to reduce the specific grinding energy,normal grinding forces,tangential grinding forces,and surface roughness by 65%,57%,65%,and 18%respectively.Finally,regression analysis was used to obtain an optimum parameter combinations.The observations from this work will aid the smooth transition towards ecofriendly and sustainable machining of engineering ceramics.
基金supported by the National Key R&D Program of China (Grant No.2022YFA1402903)the National Natural Science Foundation of China (Grant Nos.52172116 and 62171214)the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)。
文摘The 0.98(K_(0.5)Na_(0.5))NbO_(3)-0.02Ba(Nb_(0.5)Co_(0.5))O_(3-δ) ceramics with doped Ba^(2+) and Co^(2+) ions are fabricated,and the impacts of the thermal process are studied.Compared with the rapidly cooled (RC) sample,the slowly cooled (SC) sample possesses superior dielectric and ferroelectric properties,and an 11 K higher ferroelectricparaelectric phase transition temperature,which can be attributed to the structural characteristics such as the grain size and the degree of anisotropy.Heat treatment can reversibly modulate the content of the oxygen vacancies,and in turn the ferroelectric hysteresis loops of the samples.Finally,robust and tunable ferroelectric property is achieved in SC samples with good structural integrity.
基金This work was supported by the Natural Science Foundation of China(Grant Nos.22175150,52362037 and U2002217)the Basic Research Program of Yunnan Province(Grant No.202101AT070002)the Key R&D program of Yunnan Province(Grant No.2018BA068).
文摘Lanthanide(Ln^(3+))based ferroelectric phosphors,with an integration of PL emission and ferroelectric effect,are unveiling an exciting realm of possibilities for multifunctional ferroelectric-optic materials.However,how the ferroelectric host enables the tuning on the PL emissions through modulating the local structure(e.g.,lattice site,symmetry,strains etc.)of the Ln^(3+)activator is not established yet.In this work,a luminescent-ferroelectric material,i.e.Dy^(3+)doped BaTiO_(3) ceramic(Ba_(1–x)Dy_(x)TiO_(3)(x=0–0.07),abbr:BTO:Dy^(3+)),was explored to address the aforementioned issues.The BTO:Dy^(3+)ceramics were synthesized by a solid-state reaction method.The crystal structure,photoluminescence(PL)and electric properties(dielectric constant,ferroelectric hysteresis and piezoelectric hysteresis loop)were systematically investigated.The BTO:Dy^(3+)ceramics show two predominant emission peaks,corresponding to the blue magnetic dipole transition(477 nm,4F_(7/2)→6H_(15/2))and yellow electric dipole transition(573 nm,4F_(7/2)→6H_(13/2)),the intensity ration of which can be modulated by the ferroelectric polarization that causes the slight lattice deformation.Such a polarization-emission modulation combining with the Dy3+doping could accelerate the color change,from yellow to blue,which is characterized to detect the phase transition,with a method and mechanism were proposed,that is,the phase change is reflected by the PL characteristic peak intensity ratio.Therefore,the current results offer a convenient photoluminescence method for detecting the ferroelectric phase transition and a feasible approach to study the interaction between the photoluminescence and polarization in ferroelectric materials,for providing new insights for the development of multifunctional materials.
基金Funded by the National Natural Science Foundation of China(No.52272072)the Independent Innovation Projects of the Hubei Longzhong Laboratory(No.2022ZZ-13)。
文摘A series of spinel-type Mg_(0.25-x)Al_(2.57)O_(3.79)N_(0.21):xMn^(2+)(MgAlON:xMn^(2+))phosphors were synthesized by the solid-state reaction route.The transparent ceramic phosphors were fabricated by pressureless sintering followed by hot-isostatic pressing(HIP).The crystal structure,luminescence and mechanical properties of the samples were systematically investigated.The transparent ceramic phosphors with tetrahedrally coordinated Mn^(2+)show strong green emission centered around 515 nm under blue light excitation.As the Mn^(2+)concentration increases,the crystal lattice expands slightly,resulting in a variation of crystal field and a slight red-shift of green emission peak.Six weak absorption peaks in the transmittance spectra originate from the spin-forbidden ^(4)T_(1)(^(4)G)→^(6)A_(1) transition of Mn^(2+).The decay time was found to decrease from 5.66 to 5.16 ms with the Mn^(2+)concentration.The present study contributes to the systematic understanding of crystal structure and properties of MgAlON:xMn^(2+)green-emitting transparent ceramic phosphor which has a potential application in high-power light-emitting diodes.
基金The authors acknowledge the support from the Natural Science Foundation of China(12264036)the Natural Science Foundation of Inner Mongolia(2021JQ06)+2 种基金Scientific and Technological Development Foundation of the Central Guidance Local(2021ZY0008)Youth Science and Technology Talents Project of Inner Mongolia(NJYT22061)“Light of the West”talent training program of Chinese Academy of Sciences,Talent Development Fund of Inner Mongolia and Grassland Talents of Inner Mongolia.
文摘The anomalous photovoltaic(APV)effect is promising for high-performance ferroelectric materials and devices in photoelectric applications.However,it is a challenge how to tune the APV effect by utilizing the characteristic structure of ferroelectrics.Here,a domain engineering strategy is proposed to enhance the APV effect in lead-free 0.88(Na_(0.5)Bi_(0.5)TiO_(3))-0.12(Ba_(1–1.5x)S_(mx)TiO_(3))(NBT-BST)ferroelectric ceramics.By tuning the domain size based on Sm^(3+)doping,a maximum open-circuit voltage(VOC)of 18.1 V is obtained when Sm^(3+)content is 0.75%,which is much larger than its bandgap(Eg).The mechanism of this large VOC originates from the multiple positive effects induced by the small-size domain,where decreasing domain size enhances ferroelectric polarization and net interface barrier potential,leading to a large driving electric field.Moreover,the APV effect exhibits a giant temperature sensitivity due to the dramatic evolution of small-size domain in the temperature field.This work sheds light on the exploration of ferroelectrics with APV effect and inspires their future high-performance optoelectronic device applications.
基金The work was supported by Guangxi Science,Technology Base and Talent Special Project(GUIKE AD23026063)Guangxi Natural Science Foundation Project(2022GXNSFBA035573)State Key Laboratory of New Ceramic and Fine Processing Tsinghua Univer-sity(KF202306).
文摘High-field strain and its temperature stability of(1-x)K_(0.48)Na_(0.52)Nb_(0.96)Ta_(0.04)O_(3)-xBaZrO_(3)+8%MnO+3%ZrO_(2)(in mole,KNNT-xBZ+8Mn)ceramics sintered in reducing atmosphere are improved simultaneously via defect design in A and B site.There is a conducting type transition from n-type to p-type at x=0.07.The BaZrO_(3) dopant not only induces the increase of defects(Zr′_(Nb),Ba_(Na),Ba_(K))concentration,but also results in the increase of defect(Mn″_(Nb))concentration,because more Mn ions as+2 oxidation state in ceramics is triggered by BaZrO3 doping modifcation.Defect dipoles(Mn″_(Nb)-V_(o),Zr′_(Nb)-V_(o),Ba_(Na)-V′_(Na),Ba_(Na)-V′_(Na))in poled and aged ceramics enhance the reversibility of the non-180°domains switching,which increases the high-field strain of KNNT-xBZ+8Mn ceramics.The reversibility of non-180°domain switching can be preserved to high temperature due to stable defect dipoles(Ba_(Na)-V′_(Na),Ba_(K)-V′_(K))in A-site.The KNNT-xBZ+8Mn ceramics at x=0.07 show the largest high-field strain coefficient(543 pm/V@20 kV/cm)and the highest temperature stability(125℃).The KNNT-xBZ+8Mn ceramic is a lead-free material with great potential to be applied in the fabrication of multilayer ceramic actuators with Ni inner electrodes in the future.
基金Funded by the National Key Research and Development Program of China(No.2023YFB3812200)the National Key Basic Research Program of China(973 Program)(No.2015CB654601)。
文摘Under illumination by 405,520 and 655 nm monochromatic visible light(light intensity of 30 kW/m^(2)),large photostriction(ΔL/L)of 0.19%,0.13%and 0.26%for 67BiFeO_(3)-33BaTiO_(3)(67BF-33BT)lead-free ferroelectric ceramics are obtained,respectively.By studying the ferroelectric and photoelectric properties in conjunction with in situ Raman spectroscopy,it is found that the photostrictive effect of 67BF-33BT is not caused by the electrical strain induced by abnormal photovoltaic voltage,but related to the optical induced oxygen octahedral distortion.The 67BF-33BT lead-free ferroelectric material with excellent photostrictive response in the visible light region is expected to play an important role in the field of optical drive electromechanical devices.
基金Funded by the Scientific and Technological Innovation Project of Carbon Emission Peak and Carbon Neutrality of Jiangsu Province(No.BE2022028-4)。
文摘Industrial wastes such as steel slag and coal gangue etc.were chosen as raw materials for preparing ceramic via the conventional solid-state reaction method.With steel slag and coal gangue mixed in various mass ratios,from 100%steel slag to 100%coal gangue at 10%intervals,microstructure and possible phase evolution of the coal gangue-steel slag ceramics were investigated using X-ray powder diffraction,scanning electron microscopy,mercury intrusion porosimetry and Archimedes boiling method.The experimental results suggest that the phase compositions of the as-prepared ceramics could be altered with the increased amount of coal gangue in the ceramics.The anorthite-diopside eutectic can be formed in the ceramics with the mass ratios of steel slag to coal gangue arranged from 8:2 to 2:8,which was responsible for the melting of the steel slag-coal gangue ceramics at relatively high temperature.Further investigations on the microstructure suggested that the addition of the proper amount of steel slag in ceramic compositions was conducive to the pore formation and further contributed to an increment in porosity.
基金supported by the Research Grants Council,University Grants Committee,Hong Kong SAR(Project Number:N_PolyU552/20)supported by the National Nature Science Foundation of China(22209138)Guangdong Basic and Applied Basic Research Foundation(2021A1515110464).
文摘Reversible protonic ceramic cells(RePCCs)hold promise for efficient energy storage,but their practicality is hindered by a lack of high-performance air electrode materials.Ruddlesden-Popper perovskite Sr_(3)Fe_(2)O_(7−δ)(SF)exhibits superior proton uptake and rapid ionic conduction,boosting activity.However,excessive proton uptake during RePCC operation degrades SF’s crystal structure,impacting durability.This study introduces a novel A/B-sites co-substitution strategy for modifying air electrodes,incorporating Sr-deficiency and Nb-substitution to create Sr_(2.8)Fe_(1.8)Nb_(0.2)O_(7−δ)(D-SFN).Nb stabilizes SF’s crystal,curbing excessive phase formation,and Sr-deficiency boosts oxygen vacancy concentration,optimizing oxygen transport.The D-SFN electrode demonstrates outstanding activity and durability,achieving a peak power density of 596 mW cm^(−2)in fuel cell mode and a current density of−1.19 A cm^(−2)in electrolysis mode at 1.3 V,650℃,with excellent cycling durability.This approach holds the potential for advancing robust and efficient air electrodes in RePCCs for renewable energy storage.
基金the sponsorship of the following fund projects:the Guangdong Basic and Applied Basic Research Foundation,China(No.2023A1515110578)the Guangzhou Basic and Applied Basic Research Project,China(No.2024A04J00725)the Guangdong Academy of Sciences Project of Science and Technology Development,China(Nos.2022GDASZH-2022010107 and 2022GDASZH-2022010108).Dr.Zhao would particularly like to thank his wife,M.S.Guo,for her help with the language of the manuscript and for the encouragement of their newborn baby.
文摘The urgent need for integrated molding and sintering across various industries has inspired the development of additive manu-facturing(AM)ceramics.Among the different AM technologies,direct laser additive manufacturing(DLAM)stands out as a group of highly promising technology for flexibly manufacturing ceramics without molds and adhesives in a single step.Over the last decade,sig-nificant and encouraging progress has been accomplished in DLAM of high-performance ceramics,including Al_(2)O_(3),ZrO_(2),Al_(2)O_(3)/ZrO_(2),SiC,and others.However,high-performance ceramics fabricated by DLAM face challenges such as formation of pores and cracks and resultant low mechanical properties,hindering their practical application in high-end equipment.Further improvements are necessary be-fore they can be widely adopted.Methods such as field-assisted techniques and post-processing can be employed to address these chal-lenges,but a more systematic review is needed.This work aims to critically review the advancements in direct selective laser sintering/melting(SLS/SLM)and laser directed energy deposition(LDED)for various ceramic material systems.Additionally,it provides an overview of the current challenges,future research opportunities,and potential applications associated with DLAM of high-perform-ance ceramics.
基金supported by the National Natural Science Foundation of China(Grant Nos.92060203,52105453,and 92360304)the Science Center for Gas Turbine Project(No.P2022-A-IV-002-001).
文摘Ceramic matrix composites(CMCs)are highly promising materials for the next generation of aero-engines.However,machining of CMCs suffers from low efficiency and poor surfacefinish,which presents an obstacle to their wider application.To overcome these problems,this study investigates high-efficiency deep grinding of CMCs,focusing on the effects of grinding depth.The results show that both the sur-face roughness and the depth of subsurface damage(SSD)are insensitive to grinding depth.The material removal rate can be increased sixfold by increasing the grinding depth,while the surface roughness and SSD depth increase by only about 10%.Moreover,it is found that the behavior of material removal is strongly dependent on grinding depth.As the grinding depth is increased,fibers are removed in smaller sizes,with thefiber length in chips being reduced by about 34%.However,too large a grinding depth will result in blockage by chip powder,which leads to a dramatic increase in the ratio of tangential to normal grinding forces.This study demonstrates that increasing the depth of cut is an effective approach to improve the machining efficiency of CMCs,while maintaining a good surfacefin-ish.It provides the basis for the further development of high-performance grinding methods for CMCs,which should facilitate their wider application.
基金supported by JSPS Kakenhi program(program number 16H06364)and JST CRESTThe authors extend their appreciation to the Deputyship for Research and Innovation,“Ministry of Education”in Saudi Arabia for funding this research(IFKSUOR3-615-5)O.M.also thank the support of Tomsk State University Development Programme(priority-2030)for this work.
文摘Due to the push for carbon neutrality in various human activities,the development of methods for producing electricity without relying on chemical reaction processes or heat sources has become highly significant.Also,the challenge lies in achieving microwatt-scale outputs due to the inherent conductivity of the materials and diverting electric currents.To address this challenge,our research has concentrated on utilizing nonconductive mediums for water-based low-cost microfibrous ceramic wools in conjunction with a NaCl aqueous solution for power generation.The main source of electricity originates from the directed movement of water molecules and surface ions through densely packed microfibrous ceramic wools due to the effect of dynamic electric double layer.This occurrence bears resemblance to the natural water transpiration in plants,thereby presenting a fresh and straightforward approach for producing electricity in an ecofriendly manner.The generator module demonstrated in this study,measuring 12×6 cm^(2),exhibited a noteworthy open-circuit voltage of 0.35 V,coupled with a short-circuit current of 0.51 mA.Such low-cost ceramic wools are suitable for ubiquitous,permanent energy sources and hold potential for use as self-powered sensors and systems,eliminating the requirement for external energy sources such as sunlight or heat.
基金This research was supported by National Natural Science Foundations of China(51972118)the Fundamental Research Funds for the Central Universities(2023ZYGXZR002)the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(2017BT01X137).
文摘Laser phosphor display technology plays an important role in advanced display projection;however,it is a challenge in maintaining excellent color accuracy under high brightness due to the lack of red spectrum.Here,red-emitting Mg_(2)Al_(4)Si_(5)O_(18):Eu^(2+)ceramics as the phosphor wheel have been optimized in chemical compositions and texture orientation.The textured Mg_(2)Al_(4)Si_(5)O_(18):Eu^(2+)ceramics have high transparency and spot limiting ability,accordingly,the ceramic wheel outputs 1,184 lm of ultra-bright red light under 50 W/mm^(2) laser power density.Moreover,the red spectral utilization(over 600 nm)of textured Mg_(2)Al_(4)Si_(5)O_(18):Eu^(2+)ceramics is 2.17 times that of traditional Y3Al5O12:Ce^(3+)phosphor wheel.The red-emitting textured Mg_(2)Al_(4)Si_(5)O_(18):Eu^(2+)cordierite ceramic herein enables an improved light-color saturation experience,and it is potential in the next-generation laser phosphor display applications.
基金National Key R&D Program of China(2022YFB3707700)Shanghai Science and Technology Innovation Action Plan(21511104800)+3 种基金National Natural Science Foundation of China(52172111)National Science and Technology Major Project(2017-IV-0005-0042)Key Research Program of the Chinese Academy of Sciences(ZDRW-CN-2021-2-2)Science Center for Gas Turbine Project(P2022-B-IV-001-001)。
文摘ZrB_(2)-based ceramics typically necessitate high temperature and pressure for sintering,whereas ZrB_(2)-SiC ceramics can be fabricated at 1500℃using the process of reactive melt infiltration with Si.In comparison to the conventional preparation method,reactive synthesis allows for the more facile production of ultra-high temperature ceramics with fine particle size and homogeneous composition.In this work,ZrSi_(2),B4C,and C were used as raw materials to prepare ZrB_(2)-SiC via combination of tape casting and reactive melt infiltration herein referred to as ZBC ceramics.Control sample of ZrB_(2)-SiC was also prepared using ZrB_(2) and SiC as raw materials through an identical process designated as ZS ceramics.Microscopic analysis of both ceramic groups revealed smaller and more uniformly distributed particles of the ZrB_(2) phase in ZBC ceramics compared to the larger particles in ZS ceramics.Both sets of ceramics underwent cyclic oxidation testing in the air at 1600℃for a cumulative duration of 5 cycles,each cycle lasting 2 h.Analysis of the oxidation behavior showed that both ZBC ceramics and ZS ceramics developed a glassy SiO_(2)-ZrO_(2) oxide layer on their surfaces during the oxidation.This layer severed as a barrier against oxygen.In ZBC ceramics,ZrO_(2) is finely distributed in SiO_(2),whereas in ZS ceramics,larger ZrO_(2) particles coexist with glassy SiO_(2).The surface oxide layer of ZBC ceramics maintains a dense structure because the well-dispersed ZrO_(2) increases the viscosity of glassy SiO_(2),preventing its crystallization during the cooling.Conversely,some SiO_(2) in the oxide layer of ZS ceramics may crystallize and form a eutectic with ZrO_(2),leading to the formation of ZrSiO_(4).This leads to cracking of the oxide layer due to differences in thermal expansion coefficients,weakening its barrier effect.An analysis of the oxidation resistance shows that ZBC ceramics exhibit less increase in oxide layer thickness and mass compared to ZS ceramics,suggesting superior oxidation resistance of ZBC ceramics.