BACKGROUND: Current studies related to the effects of proanthocyanidins on Alzheimer's disease have focused primarily on the signal transduction pathway of cellular apoptosis. However, the influence of p53 gene expr...BACKGROUND: Current studies related to the effects of proanthocyanidins on Alzheimer's disease have focused primarily on the signal transduction pathway of cellular apoptosis. However, the influence of p53 gene expression on cell cycle regulation, with regard to the protective mechanisms of proanthocyanidins, has not been reported. OBJECTIVE: To observe the effect of proanthocyanidins on cell cycle distribution, cellular apoptosis and p53 gene expression in β-amyloid peptide (25-35) (Aβ25-35)-induced PC12 cells cultured in serum-free media, and to investigate the molecular neuroprotective mechanisms of proanthocyanidins with regard to cell cycle regulation. DESIGN, TIME AND SETTING: A parallel, controlled, at the Institute of Biochemistry and Molecular Biology cellular, and molecular study was performed Guangdong Medical College from July 2006 to July 2008. MATERIALS: Proanthocyanidins were provided by Nanjing Xuezi Medical and Chemical Research Center, China; Aβ25-35 was provided by Sigma, USA; PC12 cells were provided by the Institute of Basic Medical Science, Academy of Military Medical Sciences; and rabbit anti-p53 polyclonal antibody was provided by Santa Cruz Biotechnology, USA. METHODS: PC12 cells were cultured in serum-free media for 24 hours. Cells from the model group were treated with 25 μmol/L Aβ25-35 for 24 hours. Cells in the drug protection group were pre-treated with 30 mg/L proanthocyanidins for 1 hour and then treated with 25 μmol/LAβ2^-35 for 24 hours. The control group was not treated. MAIN OUTCOME MEASURES: Flow cytometry was used to detect cell cycle distribution and rate of apoptosis; reverse-transcriptase polymerase chain reaction was used to detect p53 mRNA expression; and Western blot was used to detect p53 protein expression. RESULTS: After treating with 25 μmol/LAβ25-35 for 24 hours, the rate of apoptosis and the percentage of cells in S phase were significantly increased (P 〈 0.01 ), and p53 mRNA and protein expressions were decreased. Pretreatment with proanthocyanidins for 1 hour blocked the increase in apoptosis and the percentage of cells in S phase in Aβ25-35-induced PC12 cells (P 〈 0.01 ) and increased p53 mRNA and protein expressions. CONCLUSION: Proanthocyanidins blocked apoptosis and S-phase arrest in Aβ25-35-induced PC12 cells cultured in serum-free media. The protective mechanism could be related to increased p53 mRNA and protein expressions.展开更多
BACKGROUND: Cyclophilin A can protect neurons against oxidative stress. OBJECTIVE: To investigate the effect of cyclophilin A on Bcl-2 and Bax protein expression in pheochro-mocytoma (PC12) cells treated with beta...BACKGROUND: Cyclophilin A can protect neurons against oxidative stress. OBJECTIVE: To investigate the effect of cyclophilin A on Bcl-2 and Bax protein expression in pheochro-mocytoma (PC12) cells treated with beta-amyloid fragment 25-35 (Aβ25-35), and to verify the protection pathway of cyclophilin A. DESIGN, TIME AND SETTING: The initial experiment was performed at the Laboratory of Department of Neurology, First Clinical College, China Medical University from November 2006 to July 2007. MATERIALS: PC12 cells were cultured at the Cell Center of Peking Union Medical College. Aβ25-35 (Sigma, USA), antibodies of Bcl-2 and Bax (Wuhan Boster, China), and recombinant human cyclophilin A (Biomol, USA) were used in this study. METHODS: PC12 cells were divided into three groups. Cells in the control group were incubated in culture medium. Cells in the Aβ25-35 injury group were incubated in medium containing a final concentration of 10 μmol/L of Aβ25-35. Cells in the cyclophilin A group were incubated in medium containing a final con-centration of 10 nmol/L of cyclophilin A for 30 minutes, and then treated with 10 μmol/L Aβ25-35. MAIN OUTCOME MEASURES: After 24 hours of culture, immunohistochemistry was used to detect Bcl-2 and Bax expression in PC12 cells. Annexin-V flow cytometry was employed to measure the apoptosis rate of PC12 cells. The MTT method was applied to examine the survival rate of PC12 cells. RESULTS: Bcl-2 expression decreased, whereas Bax expression increased in PC12 cells treated with Aβ25-35 (t = 2.277, 5.957, P 〈 0.05). However, in PC12 cells treated with Aβ25-35 and cyclophilin A, Bcl-2 expression increased and Bax expression decreased (t = 4.497, 2.531, P 〈 0.05). The survival rate of PC12 cells significantly decreased and the apoptosis rate increased (t=8.509, 22.886, P 〈 0.05) following Aβ25-35 treatment. Cyclophilin A enhanced the survival rate of PC12 cells to Aβ25-35-induced apoptosis (t = 4.895, 10.042, P 〈 0.05). CONCLUSION: Cyclophilin A can increase Bcl-2 expression and decrease Bax expression in PC12 cells treated with Aβ25-35, which indicates that cyclophilin A has a protective effect on Aβ25-35-induced injury to PC12 cells.展开更多
Objective To study the therapeutic effects of Ginsenoside Rg-1 and Gastrodine on rats model of Alzheimer's disease(AD). Methods Aggregated β-Amyloid peptide (25-35) was injected into the lateral ventricle of rats...Objective To study the therapeutic effects of Ginsenoside Rg-1 and Gastrodine on rats model of Alzheimer's disease(AD). Methods Aggregated β-Amyloid peptide (25-35) was injected into the lateral ventricle of rats to establish AD models. Ginsenoside Rg-1, Gastrodine and Ginsenoside Rg-1+Gastrodine were intraperitoneally injected into rats of each test group(Ginsenoside Rg-1∶10mg/kg·day; Gastrodine 100mg/kg·day) for 4 weeks, the rats of control group received equal volume of saline. Passive avoidance task and Morris maze test were done to assess the ability of learning and memory. The content of superoxide dismutase (SOD), malondiadehyde (MDA), total-antioxidative capability (T-AOC), Choline acetyltransferase (ChAT) and acetylcholinesterase (AchE) in brain tissue were measured. Results Ginsenoside Rg-1 and Gastrodine significantly improved learning and memory deficits in the rats with AD induced by β-Amyloid peptide (25-35) (P<0.05). Ginsenoside Rg-1+Gastrodine group were better than Ginsenoside Rg-1 group and Gastrodine group (P<0.05). Ginsenoside Rg-1 reduced the increase of SOD, MDA, but inhibited the decrease of T-AOC, AchE and ChAT; Gastrodine reduced the increase of SOD, MDA, while inhibited the decrease of T-AOC. Gastrodine could also prevent the activity of ChAT and AchE decline in AD rats. Conclusion Both Ginsenoside Rg-1 and Gastrodine have therapeutic effects on rats with AD; Ginsenoside Rg-1 and Gastrodine injection at the same time were better than only using one of them. Their mechanisms might different. Ginsenoside Rg-1 can not only inhibit peroxidation but also increase the activity of AchE and ChAT in brain tissue, while Gastrodine can inhibit peroxidation only, but it can't prevent the decline of ChAT and AchE activity in AD rats.展开更多
基金Key Discipline Key Projects in Guangdong Province (9808)
文摘BACKGROUND: Current studies related to the effects of proanthocyanidins on Alzheimer's disease have focused primarily on the signal transduction pathway of cellular apoptosis. However, the influence of p53 gene expression on cell cycle regulation, with regard to the protective mechanisms of proanthocyanidins, has not been reported. OBJECTIVE: To observe the effect of proanthocyanidins on cell cycle distribution, cellular apoptosis and p53 gene expression in β-amyloid peptide (25-35) (Aβ25-35)-induced PC12 cells cultured in serum-free media, and to investigate the molecular neuroprotective mechanisms of proanthocyanidins with regard to cell cycle regulation. DESIGN, TIME AND SETTING: A parallel, controlled, at the Institute of Biochemistry and Molecular Biology cellular, and molecular study was performed Guangdong Medical College from July 2006 to July 2008. MATERIALS: Proanthocyanidins were provided by Nanjing Xuezi Medical and Chemical Research Center, China; Aβ25-35 was provided by Sigma, USA; PC12 cells were provided by the Institute of Basic Medical Science, Academy of Military Medical Sciences; and rabbit anti-p53 polyclonal antibody was provided by Santa Cruz Biotechnology, USA. METHODS: PC12 cells were cultured in serum-free media for 24 hours. Cells from the model group were treated with 25 μmol/L Aβ25-35 for 24 hours. Cells in the drug protection group were pre-treated with 30 mg/L proanthocyanidins for 1 hour and then treated with 25 μmol/LAβ2^-35 for 24 hours. The control group was not treated. MAIN OUTCOME MEASURES: Flow cytometry was used to detect cell cycle distribution and rate of apoptosis; reverse-transcriptase polymerase chain reaction was used to detect p53 mRNA expression; and Western blot was used to detect p53 protein expression. RESULTS: After treating with 25 μmol/LAβ25-35 for 24 hours, the rate of apoptosis and the percentage of cells in S phase were significantly increased (P 〈 0.01 ), and p53 mRNA and protein expressions were decreased. Pretreatment with proanthocyanidins for 1 hour blocked the increase in apoptosis and the percentage of cells in S phase in Aβ25-35-induced PC12 cells (P 〈 0.01 ) and increased p53 mRNA and protein expressions. CONCLUSION: Proanthocyanidins blocked apoptosis and S-phase arrest in Aβ25-35-induced PC12 cells cultured in serum-free media. The protective mechanism could be related to increased p53 mRNA and protein expressions.
文摘BACKGROUND: Cyclophilin A can protect neurons against oxidative stress. OBJECTIVE: To investigate the effect of cyclophilin A on Bcl-2 and Bax protein expression in pheochro-mocytoma (PC12) cells treated with beta-amyloid fragment 25-35 (Aβ25-35), and to verify the protection pathway of cyclophilin A. DESIGN, TIME AND SETTING: The initial experiment was performed at the Laboratory of Department of Neurology, First Clinical College, China Medical University from November 2006 to July 2007. MATERIALS: PC12 cells were cultured at the Cell Center of Peking Union Medical College. Aβ25-35 (Sigma, USA), antibodies of Bcl-2 and Bax (Wuhan Boster, China), and recombinant human cyclophilin A (Biomol, USA) were used in this study. METHODS: PC12 cells were divided into three groups. Cells in the control group were incubated in culture medium. Cells in the Aβ25-35 injury group were incubated in medium containing a final concentration of 10 μmol/L of Aβ25-35. Cells in the cyclophilin A group were incubated in medium containing a final con-centration of 10 nmol/L of cyclophilin A for 30 minutes, and then treated with 10 μmol/L Aβ25-35. MAIN OUTCOME MEASURES: After 24 hours of culture, immunohistochemistry was used to detect Bcl-2 and Bax expression in PC12 cells. Annexin-V flow cytometry was employed to measure the apoptosis rate of PC12 cells. The MTT method was applied to examine the survival rate of PC12 cells. RESULTS: Bcl-2 expression decreased, whereas Bax expression increased in PC12 cells treated with Aβ25-35 (t = 2.277, 5.957, P 〈 0.05). However, in PC12 cells treated with Aβ25-35 and cyclophilin A, Bcl-2 expression increased and Bax expression decreased (t = 4.497, 2.531, P 〈 0.05). The survival rate of PC12 cells significantly decreased and the apoptosis rate increased (t=8.509, 22.886, P 〈 0.05) following Aβ25-35 treatment. Cyclophilin A enhanced the survival rate of PC12 cells to Aβ25-35-induced apoptosis (t = 4.895, 10.042, P 〈 0.05). CONCLUSION: Cyclophilin A can increase Bcl-2 expression and decrease Bax expression in PC12 cells treated with Aβ25-35, which indicates that cyclophilin A has a protective effect on Aβ25-35-induced injury to PC12 cells.
文摘Objective To study the therapeutic effects of Ginsenoside Rg-1 and Gastrodine on rats model of Alzheimer's disease(AD). Methods Aggregated β-Amyloid peptide (25-35) was injected into the lateral ventricle of rats to establish AD models. Ginsenoside Rg-1, Gastrodine and Ginsenoside Rg-1+Gastrodine were intraperitoneally injected into rats of each test group(Ginsenoside Rg-1∶10mg/kg·day; Gastrodine 100mg/kg·day) for 4 weeks, the rats of control group received equal volume of saline. Passive avoidance task and Morris maze test were done to assess the ability of learning and memory. The content of superoxide dismutase (SOD), malondiadehyde (MDA), total-antioxidative capability (T-AOC), Choline acetyltransferase (ChAT) and acetylcholinesterase (AchE) in brain tissue were measured. Results Ginsenoside Rg-1 and Gastrodine significantly improved learning and memory deficits in the rats with AD induced by β-Amyloid peptide (25-35) (P<0.05). Ginsenoside Rg-1+Gastrodine group were better than Ginsenoside Rg-1 group and Gastrodine group (P<0.05). Ginsenoside Rg-1 reduced the increase of SOD, MDA, but inhibited the decrease of T-AOC, AchE and ChAT; Gastrodine reduced the increase of SOD, MDA, while inhibited the decrease of T-AOC. Gastrodine could also prevent the activity of ChAT and AchE decline in AD rats. Conclusion Both Ginsenoside Rg-1 and Gastrodine have therapeutic effects on rats with AD; Ginsenoside Rg-1 and Gastrodine injection at the same time were better than only using one of them. Their mechanisms might different. Ginsenoside Rg-1 can not only inhibit peroxidation but also increase the activity of AchE and ChAT in brain tissue, while Gastrodine can inhibit peroxidation only, but it can't prevent the decline of ChAT and AchE activity in AD rats.