Background: Self-immunization in systemic lupus is driven by defective in apoptosis. Fas, is an apoptosis-promoting cell surface receptor. The present study evaluate the possible association between APO-1/FAS Promoter...Background: Self-immunization in systemic lupus is driven by defective in apoptosis. Fas, is an apoptosis-promoting cell surface receptor. The present study evaluate the possible association between APO-1/FAS Promoter (-670A/G) Polymorphism and sFAS level with susceptibility to lupus nephritis in SLE patients. Design and Methods: This study was performed on 88 female patients with SLE (mean age, 39.82 ± 10.16 years). 82 patients with lupus nephritis (mean age, 42.50 ± 6.65 years). 150 age and sex-matched person served as controls. All participants were genotyped for the APO-1/FAS Promoter (-670A/G) Polymorphism, manifestations and serum sFAS were correlated with the genotypes. Results: Serum sFAS was significantly higher in patients with -670 AA genotype compared to others. (-670A/G) AA genotype frequencies were significantly higher in the lupus nephritis and SLE patients groups compared with the controls and were associated with increased risk for lupus nephritis and SLE development (odds ratio, 4.08 and 1.91 respectively). Conclusions: The APO-1/FAS Promoter (-670A/G) A allele can be used as a genetic marker for lupus nephritis susceptibility in SLE and was associated with high sFAS level.展开更多
The femtosecond time-resolved difference absorption spectra of all-trans-β-Apo-8′-carotenal have been recorded and analyzed by the singular-value decomposition (SVD) method followed by global fitting using a sequent...The femtosecond time-resolved difference absorption spectra of all-trans-β-Apo-8′-carotenal have been recorded and analyzed by the singular-value decomposition (SVD) method followed by global fitting using a sequential model for the excited-state energy relaxation. With this model, we have obtained the excited-state absorption spectra and the lifetimes of the corresponding excited states both in nonpolar solvent n-hexane and polar solvent methanol. Three excited states, namely S3(170fs), S2(2.32ps) and S1(26ps) in n-hexane, and two excited states S2(190fs) and S1(9.4ps) in methanol have been observed. The excited-state absorption spectra of all-trans-β-Apo-8′-carotenal in methanol display a red shift and broadeness, while the lifetime of S1 state becomes shorter. It is proposed that these effects are related to the presence of a carbonyl functional group that leads to the solvent effect on the excited-state energy level. At the same time, it is shown that the SVD method is a useful tool in resolving the time-resolved absorption spectra.展开更多
文摘Background: Self-immunization in systemic lupus is driven by defective in apoptosis. Fas, is an apoptosis-promoting cell surface receptor. The present study evaluate the possible association between APO-1/FAS Promoter (-670A/G) Polymorphism and sFAS level with susceptibility to lupus nephritis in SLE patients. Design and Methods: This study was performed on 88 female patients with SLE (mean age, 39.82 ± 10.16 years). 82 patients with lupus nephritis (mean age, 42.50 ± 6.65 years). 150 age and sex-matched person served as controls. All participants were genotyped for the APO-1/FAS Promoter (-670A/G) Polymorphism, manifestations and serum sFAS were correlated with the genotypes. Results: Serum sFAS was significantly higher in patients with -670 AA genotype compared to others. (-670A/G) AA genotype frequencies were significantly higher in the lupus nephritis and SLE patients groups compared with the controls and were associated with increased risk for lupus nephritis and SLE development (odds ratio, 4.08 and 1.91 respectively). Conclusions: The APO-1/FAS Promoter (-670A/G) A allele can be used as a genetic marker for lupus nephritis susceptibility in SLE and was associated with high sFAS level.
文摘The femtosecond time-resolved difference absorption spectra of all-trans-β-Apo-8′-carotenal have been recorded and analyzed by the singular-value decomposition (SVD) method followed by global fitting using a sequential model for the excited-state energy relaxation. With this model, we have obtained the excited-state absorption spectra and the lifetimes of the corresponding excited states both in nonpolar solvent n-hexane and polar solvent methanol. Three excited states, namely S3(170fs), S2(2.32ps) and S1(26ps) in n-hexane, and two excited states S2(190fs) and S1(9.4ps) in methanol have been observed. The excited-state absorption spectra of all-trans-β-Apo-8′-carotenal in methanol display a red shift and broadeness, while the lifetime of S1 state becomes shorter. It is proposed that these effects are related to the presence of a carbonyl functional group that leads to the solvent effect on the excited-state energy level. At the same time, it is shown that the SVD method is a useful tool in resolving the time-resolved absorption spectra.