AIM:To study the mechanism of 5-fluorouracil(5-FU)resistance in colon cancer cells and to develop strategies for overcoming such resistance by combination treatment.METHODS:We established and characterized a 5-FU resi...AIM:To study the mechanism of 5-fluorouracil(5-FU)resistance in colon cancer cells and to develop strategies for overcoming such resistance by combination treatment.METHODS:We established and characterized a 5-FU resistance(5-FU-R)cell line derived from continuous exposure(25μmol/L)to 5-FU for 20 wk in 5-FU sensitive HCT-116 cells.The proliferation and expression of different representative apoptosis and anti-apoptosis markers in 5-FU sensitive and 5-FU resistance cells were measured by the MTT assay and by Western blotting,respectively,after treatment with Resveratrol(Res)and/or 1,3-Bis(2-chloroethyl)-1-nitrosourea(BCNU).Apoptosis and cell cycle arrest was measured by 4',6'-diamidino-2-phenylindole hydrochloride staining and fluorescence-activated cell sorting analysis,respectively.The extent of DNA damage was measured by the Comet assay.We measured the visible changes in the DNA damage/repair cascade by Western blotting.RESULTS:The widely used chemotherapeutic agents BCNU and Res decreased the growth of 5-FU sensitive HCT-116 cells in a dose dependent manner.Combined application of BCNU and Res caused more apoptosis in5-FU sensitive cells in comparison to individual treatment.In addition,the combined application of BCNU and Res caused a significant decrease of major DNA base excision repair components in 5-FU sensitive cells.We established a 5-FU resistance cell line(5-FU-R)from 5-FU-sensitive HCT-116(mismatch repair deficient)cells that was not resistant to other chemotherapeutic agents(e.g.,BCNU,Res)except 5-FU.The 5-FU resistance of 5-FU-R cells was assessed by exposure to increasing concentrations of 5-FU followed by the MTT assay.There was no significant cell death noted in5-FU-R cells in comparison to 5-FU sensitive cells after5-FU treatment.This resistant cell line overexpressed anti-apoptotic[e.g.,AKT,nuclear factorκB,FLICE-like inhibitory protein),DNA repair(e.g.,DNA polymerase beta(POL-β),DNA polymerase eta(POLH),protein Flap endonuclease 1(FEN1),DNA damage-binding protein 2(DDB2)]and 5-FU-resistance proteins(thymidylate synthase)but under expressed pro-apoptotic proteins(e.g.,DAB2,CK1)in comparison to the parental cells.Increased genotoxicity and apoptosis were observed in resistant cells after combined application of BCNU and Res in comparison to untreated or parental cells.BCNU increased the sensitivity to Res of 5-FU resistant cells compared with parental cells.Fifty percent cell death were noted in parental cells when 18μmol/L of Res was associated with fixed concentration(20μmol/L)of BCNU,but a much lower concentration of Res(8μmol/L)was needed to achieve the same effect in 5-FU resistant cells.Interestingly,increased levels of adenomatous polyposis coli and decreased levels POL-β,POLH,FEN1 and DDB2 were noted after the same combined treatment in resistant cells.CONCLUSION:BCNU combined with Res exerts a synergistic effect that may prove useful for the treatment of colon cancer and to overcome drug resistance.展开更多
Decontamination of 2-chloroethyl ethyl sulfide (2-CEES, CH_3CH_2SCH_2CH_2C1) by pulsed corona plasma was investigated. The results show that 212.6 mg/m^3 of 2-CEES, with the gas flow rate of 2 m^3/h, can be decontam...Decontamination of 2-chloroethyl ethyl sulfide (2-CEES, CH_3CH_2SCH_2CH_2C1) by pulsed corona plasma was investigated. The results show that 212.6 mg/m^3 of 2-CEES, with the gas flow rate of 2 m^3/h, can be decontaminated to 0.09 mg/m^3. According to the variation of the inlet and outlet concentration of 2-CEES vapor with retention time, it is found that the reaction of 2-CEES in a pulsed corona plasma system follows the first order reaction, with the reaction rate constant of 0.463 s^-1. The decontamination mechanism is discussed based on an analysis of the dissociation energy of chemical bonds and decontamination products. The C-S bond adjacent to the C1 atom will be destroyed firstly to form CH3CH2S. and .CH2CH2C1 radicals. CH3CH2S. can be decomposed to .C_2H_5 and .S..S can be oxidized to SO_2, while .C_2H_5 can be finally oxidized to CO_2 and H_2O. The C-Cl bond in the .CH_2CH_2C1 radical can be destroyed to form .CH_2CH_2. and .C1, which can be mineralized to CO_2, H_2O and HCl. The H atom in the .CH_2CH_2C1 radical can also be substituted by -C1 to form CHCl_2-CHCl_2.展开更多
Ethylene vinyl alchohol copolymer can be developed into new kinds of liquid embolization material possessing a great number of advantages in comparison with the current embolization substarces. The authors reviewed th...Ethylene vinyl alchohol copolymer can be developed into new kinds of liquid embolization material possessing a great number of advantages in comparison with the current embolization substarces. The authors reviewed the advancement of ethylene vinyl alchohol copolymer in the treatment of cerebral arteriovenous malformation in recent years.展开更多
基金Supported by Indian Council of Medical Research and Department of Biotechnology,Government of India
文摘AIM:To study the mechanism of 5-fluorouracil(5-FU)resistance in colon cancer cells and to develop strategies for overcoming such resistance by combination treatment.METHODS:We established and characterized a 5-FU resistance(5-FU-R)cell line derived from continuous exposure(25μmol/L)to 5-FU for 20 wk in 5-FU sensitive HCT-116 cells.The proliferation and expression of different representative apoptosis and anti-apoptosis markers in 5-FU sensitive and 5-FU resistance cells were measured by the MTT assay and by Western blotting,respectively,after treatment with Resveratrol(Res)and/or 1,3-Bis(2-chloroethyl)-1-nitrosourea(BCNU).Apoptosis and cell cycle arrest was measured by 4',6'-diamidino-2-phenylindole hydrochloride staining and fluorescence-activated cell sorting analysis,respectively.The extent of DNA damage was measured by the Comet assay.We measured the visible changes in the DNA damage/repair cascade by Western blotting.RESULTS:The widely used chemotherapeutic agents BCNU and Res decreased the growth of 5-FU sensitive HCT-116 cells in a dose dependent manner.Combined application of BCNU and Res caused more apoptosis in5-FU sensitive cells in comparison to individual treatment.In addition,the combined application of BCNU and Res caused a significant decrease of major DNA base excision repair components in 5-FU sensitive cells.We established a 5-FU resistance cell line(5-FU-R)from 5-FU-sensitive HCT-116(mismatch repair deficient)cells that was not resistant to other chemotherapeutic agents(e.g.,BCNU,Res)except 5-FU.The 5-FU resistance of 5-FU-R cells was assessed by exposure to increasing concentrations of 5-FU followed by the MTT assay.There was no significant cell death noted in5-FU-R cells in comparison to 5-FU sensitive cells after5-FU treatment.This resistant cell line overexpressed anti-apoptotic[e.g.,AKT,nuclear factorκB,FLICE-like inhibitory protein),DNA repair(e.g.,DNA polymerase beta(POL-β),DNA polymerase eta(POLH),protein Flap endonuclease 1(FEN1),DNA damage-binding protein 2(DDB2)]and 5-FU-resistance proteins(thymidylate synthase)but under expressed pro-apoptotic proteins(e.g.,DAB2,CK1)in comparison to the parental cells.Increased genotoxicity and apoptosis were observed in resistant cells after combined application of BCNU and Res in comparison to untreated or parental cells.BCNU increased the sensitivity to Res of 5-FU resistant cells compared with parental cells.Fifty percent cell death were noted in parental cells when 18μmol/L of Res was associated with fixed concentration(20μmol/L)of BCNU,but a much lower concentration of Res(8μmol/L)was needed to achieve the same effect in 5-FU resistant cells.Interestingly,increased levels of adenomatous polyposis coli and decreased levels POL-β,POLH,FEN1 and DDB2 were noted after the same combined treatment in resistant cells.CONCLUSION:BCNU combined with Res exerts a synergistic effect that may prove useful for the treatment of colon cancer and to overcome drug resistance.
基金supported by State Key Laboratory of NBC Protection for Civilian,China
文摘Decontamination of 2-chloroethyl ethyl sulfide (2-CEES, CH_3CH_2SCH_2CH_2C1) by pulsed corona plasma was investigated. The results show that 212.6 mg/m^3 of 2-CEES, with the gas flow rate of 2 m^3/h, can be decontaminated to 0.09 mg/m^3. According to the variation of the inlet and outlet concentration of 2-CEES vapor with retention time, it is found that the reaction of 2-CEES in a pulsed corona plasma system follows the first order reaction, with the reaction rate constant of 0.463 s^-1. The decontamination mechanism is discussed based on an analysis of the dissociation energy of chemical bonds and decontamination products. The C-S bond adjacent to the C1 atom will be destroyed firstly to form CH3CH2S. and .CH2CH2C1 radicals. CH3CH2S. can be decomposed to .C_2H_5 and .S..S can be oxidized to SO_2, while .C_2H_5 can be finally oxidized to CO_2 and H_2O. The C-Cl bond in the .CH_2CH_2C1 radical can be destroyed to form .CH_2CH_2. and .C1, which can be mineralized to CO_2, H_2O and HCl. The H atom in the .CH_2CH_2C1 radical can also be substituted by -C1 to form CHCl_2-CHCl_2.
文摘Ethylene vinyl alchohol copolymer can be developed into new kinds of liquid embolization material possessing a great number of advantages in comparison with the current embolization substarces. The authors reviewed the advancement of ethylene vinyl alchohol copolymer in the treatment of cerebral arteriovenous malformation in recent years.