The Ras gene,a conserved member of the insulin pathway,andβ-glucosidase gene,an important cellulase,are two important growth-related genes.However,there is no study on the association between mutations of these two g...The Ras gene,a conserved member of the insulin pathway,andβ-glucosidase gene,an important cellulase,are two important growth-related genes.However,there is no study on the association between mutations of these two genes and growth traits in bivalves.Here,the polymorphism of these two genes in Crassostrea gigas were revealed.Their association with growth traits was evaluated in 290 oysters from five families,and was further confirmed in another 186 oysters from three fast-growing strains.Seventeen and twelve SNPs were identified in the Ras gene andβ-glucosidase gene,respectively.Among these SNPs,four SNPs in each gene(Ras:C.86C>A,C.90T>C,C.112A>G and C.118G>A;β-glucosidase:C.247G>A,C.284C>T,C.1260C>T and C.1293T>C)were significantly(P<0.05)associated with the growth of these oysters.Furthermore,eight and nine haplotypes were constructed in the Ras gene andβ-glucosidase gene,respectively.Oysters with both haplotypes R-Hap5(CCAA)andβ-Hap7(ACCT),or with both R-Hap 6(ATGG)andβ-Hap 6(ACTC),or with both R-Hap 6 andβ-Hap 9(ACTT),or with both R-Hap 7(ATAA)andβ-Hap 7,showed the highest growth performances.These results provide candidate markers for selecting C.gigas with fast growth.展开更多
α-Glucosidase inhibitors are effective in controlling postprandial hyperglycemia,which play crucial roles in the management of type 2 diabetes.Protocatechuic acid(PCA)is one of phenolic acids existing not only in var...α-Glucosidase inhibitors are effective in controlling postprandial hyperglycemia,which play crucial roles in the management of type 2 diabetes.Protocatechuic acid(PCA)is one of phenolic acids existing not only in various plant foods but also as a major microbial metabolite of dietary anthocyanins in the large colon.The present study investigated the inhibitory mechanism of PCA on a-glucosidase in vitro and examined its effect on postprandial blood glucose levels in vivo.Results from in vitro experiments demonstrated that PCA was a mix-type inhibitor of a-glucosidase.Driven by hydrogen bonds and van der Waals interactions,PCA reversibly bound withα-glucosidase to form a stable a-glucosidase-PCA complex in a spontaneous manner.The computational simulation found that PCA could insert into the active cavity of a-glucosidase and establish hydrogen bonds with catalytic amino acid residues.PCA binding aroused the steric hindrance for substrates to enter active sites and caused the structural changes of interacted catalytic amino acid residues.PCA also exhibited postprandial hypoglycemic capacity in diabetic mice.This study may provide the theoretical basis for the application of PCA as an active ingredient of functional foods in dietary management of diabetes.展开更多
Objective:To investigate the relationship between triterpenoid saponin content and antioxidant,antimicrobial,and α-glucosidase inhibitory activities of 70%ethanolic,butanolic,aqueous,supernate and precipitate extract...Objective:To investigate the relationship between triterpenoid saponin content and antioxidant,antimicrobial,and α-glucosidase inhibitory activities of 70%ethanolic,butanolic,aqueous,supernate and precipitate extracts of Juglans regia leaves.Methods:Triterpenoid saponins of different Juglans regia leaf extracts were measured by the vanillin method.Antioxidant activity was evaluated against DPPH and ABTS free radicals.We also assessed α-glucosidase inhibitory and antimicrobial activities of the leaf extracts.Pearson’s correlation coefficient was evaluated to determine the correlation between the saponin content and biological activities.Results:The butanolic extract was most effective against DPPH with an IC50of 6.63μg/mL,while the aqueous extract showed the highest scavenging activity against ABTS free radical with an IC50of 42.27μg/mL.Pearson’s correlation analysis indicated a strong negative correlation (r=-0.956) between DPPH radical scavenging activity (IC50) and the saponin content in the samples examined.In addition,the aqueous extract showed the best α-glucosidase inhibitory activity compared with other extracts.All the extracts had fair antibacterial activity against Bacillus subtilis,Escherichia coli,and Klebsiella pneumoniae except for the aqueous extract.Conclusions:Juglans regia extracts show potent antioxidant,antimicrobial,and α-glucosidase inhibitory activities.There is a correlation between saponin levels in Juglans regia leaf extracts and the studied activities.However,additional research is required to establish these relationships by identifying the specific saponin molecules responsible for these activities and elucidating their mechanisms of action.展开更多
Objective:To identify alpha-glucosidase inhibitors from Ficus benghalensis and analyze gene set enrichment of regulated protein molecules.Methods:The phytoconstituents of Ficu.s benghalen.sis were queried for inhibito...Objective:To identify alpha-glucosidase inhibitors from Ficus benghalensis and analyze gene set enrichment of regulated protein molecules.Methods:The phytoconstituents of Ficu.s benghalen.sis were queried for inhibitors of alphaglucosidase,also identified as aldose reductase inhibitors.Druglikeness score,absorption,distribution,metabolism,excretion and toxicity profile,biological spectrum,and gene expression were predicated for each compound.Docking study was performed to predict the binding affinity with alpha-glucosidase and aldose reductase and compared with clinically proven molecules.Kyoto Encyclopedia of Genes and Genomes pathway analysis was performed for the regulated genes to identify the modulated pathways.Results:Apigenin,3,4’,5,7-tetrahydroxy-3’-methoxyflavone,and kaempferol were identified as inhibitors of alpha-glucosidase and aldose reductase.Kaempferol was predicted to possess the highest binding affinity with both targets.The p53 signaling pathway was predicted to modulate the majority of protein molecules in diabetes mellitus.All the alpha-glucosidase inhibitors were also predicted as membrane integrity agonist and anti-mutagenic compounds.Conclusions:The current study indicates alpha-glucosidase inhibitors from Ficus benghale,nsis can act as aldose reductase inhibitors after absorption from the intestinal tract.Furthermore,these phytoconstituents are involved in the regulation of numerous protein molecules and pathways.Hence,the anti-diabetic efficacies of these compounds are due to their action on multiple protein molecules and synergistic effects which should be confirmed by future investigations.展开更多
Four polysaccharides(MCPa,MCPb,MCPc,MCPd)were obtained from Lepidium meyenii Walp.Their structures were characterized by chemical and instrumental methods including total sugar,uronic acid and protein content determi-...Four polysaccharides(MCPa,MCPb,MCPc,MCPd)were obtained from Lepidium meyenii Walp.Their structures were characterized by chemical and instrumental methods including total sugar,uronic acid and protein content determi-nation,UV,IR and NMR spectroscopy,as well as monosaccharide composition determination and methylation analy-ses.Four polysaccharides were a group of glucans with different molecular weights ranging from 3.12 to 14.4 kDa,and shared a similar backbone chain consisting of(1→4)-glucose linkages with branches attached to C-3 and C-6.Furthermore,bioactivity assay showed that MCPs had concentration-dependent inhibitory activity onα-glucosidase.MCPb(Mw=10.1 kDa)and MCPc(Mw=5.62 kDa)with moderate molecular weights exhibited higher inhibitory activ-ity compared with MCPa and MCPd.展开更多
Grain weight is one of the key components of wheat(Triticum aestivum L.)yield.Genetic manipulation of grain weight is an efficient approach for improving yield potential in breeding programs.A recombinant inbred line(...Grain weight is one of the key components of wheat(Triticum aestivum L.)yield.Genetic manipulation of grain weight is an efficient approach for improving yield potential in breeding programs.A recombinant inbred line(RIL)population derived from a cross between W7268 and Chuanyu 12(CY12)was employed to detect quantitative trait loci(QTLs)for thousand-grain weight(TGW),grain length(GL),grain width(GW),and the ratio of grain length to width(GLW)in six environments.Seven major QTLs,QGl.cib-2D,QGw.cib-2D,QGw.cib-3B,QGw.cib-4B.1,QGlw.cib-2D.1,QTgw.cib-2D.1 and QTgw.cib-3B.1,were consistently identified in at least four environments and the best linear unbiased estimation(BLUE)datasets,and they explained 2.61 to 34.85%of the phenotypic variance.Significant interactions were detected between the two major TGW QTLs and three major GW loci.In addition,QTgw.cib-3B.1 and QGw.cib-3B were co-located,and the improved TGW at this locus was contributed by GW.Unlike other loci,QTgw.cib-3B.1/QGw.cib-3B had no effect on grain number per spike(GNS).They were further validated in advanced lines using Kompetitive Allele Specific PCR(KASP)markers,and a comparison analysis indicated that QTgw.cib-3B.1/QGw.cib-3B is likely a novel locus.Six haplotypes were identified in the region of this QTL and their distribution frequencies varied between the landraces and cultivars.According to gene annotation,spatial expression patterns,ortholog analysis and sequence variation,the candidate gene of QTgw.cib-3B.1/QGw.cib-3B was predicted.Collectively,the major QTLs and KASP markers reported here provide valuable information for elucidating the genetic architecture of grain weight and for molecular marker-assisted breeding in grain yield improvement.展开更多
Noncoding RNAs instruct the Cas9 nuclease to site speifillyl cleave DNA in the CRISPR/Cas9 system.Despite the high incidence of hepatocellular carcinoma(HCC),the patient's outcome is poor.As a result of the emerge...Noncoding RNAs instruct the Cas9 nuclease to site speifillyl cleave DNA in the CRISPR/Cas9 system.Despite the high incidence of hepatocellular carcinoma(HCC),the patient's outcome is poor.As a result of the emergence of therapeutic resistance in HCC patients,dlinicians have faced difficulties in treating such tumor.In addition,CRISPR/Cas9 screens were used to identify genes that improve the dlinical response of HCC patients.It is the objective of this article to summarize the current understanding of the use of the CRISPR/Cas9 system for the treatment of cancer,with a particular emphasis on HCC as part of the current state of knowledge.Thus,in order to locate recent developments in oncology research,we examined both the Scopus database and the PubMed database.The ability to selectively interfere with gene expression in combinatorial CRISPR/Cas9 screening can lead to the discovery of new effective HCC treatment regimens by combining clinically approved drugs.Drug resistance can be overcome with the help of the CRISPR/Cas9 system.HCC signature genes and resistance to treatment have been uncovered by genome-scale CRISPR activation screening although this method is not without limitations.It has been extensively examined whether CRISPR can be used as a tool for disease research and gene therapy.CRISPR and its applications to tumor research,particularly in HCC,are examined in this study through a review of the literature.展开更多
Neurodegenerative diseases(NDs)are a group of debilitating neurological disorders that primarily affect elderly populations and include Alzheimer's disease(AD),Parkinson's disease(PD),Huntington's disease(...Neurodegenerative diseases(NDs)are a group of debilitating neurological disorders that primarily affect elderly populations and include Alzheimer's disease(AD),Parkinson's disease(PD),Huntington's disease(HD),and amyotrophic lateral sclerosis(ALS).Currently,there are no therapies available that can delay,stop,or reverse the pathological progression of NDs in clinical settings.As the population ages,NDs are imposing a huge burden on public health systems and affected families.Animal models are important tools for preclinical investigations to understand disease pathogenesis and test potential treatments.While numerous rodent models of NDs have been developed to enhance our understanding of disease mechanisms,the limited success of translating findings from animal models to clinical practice suggests that there is still a need to bridge this translation gap.Old World nonhuman primates(NHPs),such as rhesus,cynomolgus,and vervet monkeys,are phylogenetically,physiologically,biochemically,and behaviorally most relevant to humans.This is particularly evident in the similarity of the structure and function of their central nervous systems,rendering such species uniquely valuable for neuroscience research.Recently,the development of several genetically modified NHP models of NDs has successfully recapitulated key pathologies and revealed novel mechanisms.This review focuses on the efficacy of NHPs in modeling NDs and the novel pathological insights gained,as well as the challenges associated with the generation of such models and the complexities involved in their subsequent analysis.展开更多
BACKGROUND Helicobacter pylori(H.pylori)infection is related to various extragastric diseases including type 2 diabetes mellitus(T2DM).However,the possible mechanisms connecting H.pylori infection and T2DM remain unkn...BACKGROUND Helicobacter pylori(H.pylori)infection is related to various extragastric diseases including type 2 diabetes mellitus(T2DM).However,the possible mechanisms connecting H.pylori infection and T2DM remain unknown.AIM To explore potential molecular connections between H.pylori infection and T2DM.METHODS We extracted gene expression arrays from three online datasets(GSE60427,GSE27411 and GSE115601).Differentially expressed genes(DEGs)commonly present in patients with H.pylori infection and T2DM were identified.Hub genes were validated using human gastric biopsy samples.Correlations between hub genes and immune cell infiltration,miRNAs,and transcription factors(TFs)were further analyzed.RESULTS A total of 67 DEGs were commonly presented in patients with H.pylori infection and T2DM.Five significantly upregulated hub genes,including TLR4,ITGAM,C5AR1,FCER1G,and FCGR2A,were finally identified,all of which are closely related to immune cell infiltration.The gene-miRNA analysis detected 13 miRNAs with at least two gene cross-links.TF-gene interaction networks showed that TLR4 was coregulated by 26 TFs,the largest number of TFs among the 5 hub genes.CONCLUSION We identified five hub genes that may have molecular connections between H.pylori infection and T2DM.This study provides new insights into the pathogenesis of H.pylori-induced onset of T2DM.展开更多
Exosomes exhibit complex biological functions and mediate a variety of biological processes,such as promoting axonal regeneration and functional recove ry after injury.Long non-coding RNAs(IncRNAs)have been reported t...Exosomes exhibit complex biological functions and mediate a variety of biological processes,such as promoting axonal regeneration and functional recove ry after injury.Long non-coding RNAs(IncRNAs)have been reported to play a crucial role in axonal regeneration.Howeve r,the role of the IncRNA-microRNAmessenger RNA(mRNA)-competitive endogenous RNA(ceRNA)network in exosome-mediated axonal regeneration remains unclear.In this study,we performed RNA transcriptome sequencing analysis to assess mRNA expression patterns in exosomes produced by cultured fibroblasts(FC-EXOs)and Schwann cells(SCEXOs).Diffe rential gene expression analysis,Gene Ontology analysis,Kyoto Encyclopedia of Genes and Genomes analysis,and protein-protein intera ction network analysis were used to explo re the functions and related pathways of RNAs isolated from FC-EXOs and SC-EXOs.We found that the ribosome-related central gene Rps5 was enriched in FC-EXOs and SC-EXOs,which suggests that it may promote axonal regeneration.In addition,using the miRWalk and Starbase prediction databases,we constructed a regulatory network of ceRNAs targeting Rps5,including 27 microRNAs and five IncRNAs.The ceRNA regulatory network,which included Ftx and Miat,revealed that exsosome-derived Rps5 inhibits scar formation and promotes axonal regeneration and functional recovery after nerve injury.Our findings suggest that exosomes derived from fibro blast and Schwann cells could be used to treat injuries of peripheral nervous system.展开更多
Root system architecture plays an essential role in water and nutrient acquisition in plants,and it is significantly involved in plant adaptations to various environmental stresses.In this study,a panel of 242 cotton ...Root system architecture plays an essential role in water and nutrient acquisition in plants,and it is significantly involved in plant adaptations to various environmental stresses.In this study,a panel of 242 cotton accessions was collected to investigate six root morphological traits at the seedling stage,including main root length(MRL),root fresh weight(RFW),total root length(TRL),root surface area(RSA),root volume(RV),and root average diameter(AvgD).The correlation analysis of the six root morphological traits revealed strong positive correlations of TRL with RSA,as well as RV with RSA and AvgD,whereas a significant negative correlation was found between TRL and AvgD.Subsequently,a genome-wide association study(GWAS)was performed using the root phenotypic and genotypic data reported previously for the 242 accessions using 56,010 single nucleotide polymorphisms(SNPs)from the CottonSNP80K array.A total of 41 quantitative trait loci(QTLs)were identified,including nine for MRL,six for RFW,nine for TRL,12 for RSA,12 for RV and two for AvgD.Among them,eight QTLs were repeatedly detected in two or more traits.Integrating these results with a transcriptome analysis,we identified 17 candidate genes with high transcript values of transcripts per million(TPM)≥30 in the roots.Furthermore,we functionally verified the candidate gene GH_D05G2106,which encodes a WPP domain protein 2in root development.A virus-induced gene silencing(VIGS)assay showed that knocking down GH_D05G2106significantly inhibited root development in cotton,indicating its positive role in root system architecture formation.Collectively,these results provide a theoretical basis and candidate genes for future studies on cotton root developmental biology and root-related cotton breeding.展开更多
Alzheimer’s disease is a progressive neurodegenerative disorder and the most common cause of dementia that principally affects older adults.Pathogenic factors,such as oxidative stress,an increase in acetylcholinester...Alzheimer’s disease is a progressive neurodegenerative disorder and the most common cause of dementia that principally affects older adults.Pathogenic factors,such as oxidative stress,an increase in acetylcholinesterase activity,mitochondrial dysfunction,genotoxicity,and neuroinflammation are present in this syndrome,which leads to neurodegeneration.Neurodegenerative pathologies such as Alzheimer’s disease are considered late-onset diseases caused by the complex combination of genetic,epigenetic,and environmental factors.There are two main types of Alzheimer’s disease,known as familial Alzheimer’s disease(onset<65 years)and late-onset or sporadic Alzheimer’s disease(onset≥65 years).Patients with familial Alzheimer’s disease inherit the disease due to rare mutations on the amyloid precursor protein(APP),presenilin 1 and 2(PSEN1 and PSEN2)genes in an autosomaldominantly fashion with closely 100%penetrance.In contrast,a different picture seems to emerge for sporadic Alzheimer’s disease,which exhibits numerous non-Mendelian anomalies suggesting an epigenetic component in its etiology.Importantly,the fundamental pathophysiological mechanisms driving Alzheimer’s disease are interfaced with epigenetic dysregulation.However,the dynamic nature of epigenetics seems to open up new avenues and hope in regenerative neurogenesis to improve brain repair in Alzheimer’s disease or following injury or stroke in humans.In recent years,there has been an increase in interest in using natural products for the treatment of neurodegenerative illnesses such as Alzheimer’s disease.Through epigenetic mechanisms,such as DNA methylation,non-coding RNAs,histone modification,and chromatin conformation regulation,natural compounds appear to exert neuroprotective effects.While we do not purport to cover every in this work,we do attempt to illustrate how various phytochemical compounds regulate the epigenetic effects of a few Alzheimer’s disease-related genes.展开更多
Objective:To explore the anti-diabetic effects and its underlying mechanism of Annona muricata Linn fruit ethanol extract(AME).Methods:Streptozotocin-induced type 2 diabetic(T2DM)mouse model was constructed.Those diab...Objective:To explore the anti-diabetic effects and its underlying mechanism of Annona muricata Linn fruit ethanol extract(AME).Methods:Streptozotocin-induced type 2 diabetic(T2DM)mouse model was constructed.Those diabetic mice were randomly grouped and given 50 mg/kg acarbose or AME(200 mg/kg,100 mg/kg or 50 mg/kg)for four weeks.The body weight,postprandial blood glucose and glycosylated hemoglobin levels were measured during the administration.After the administration,a glucose tolerance test was performed,and the levels of triglycerides,cholesterol and low-density lipoproteins in mice were detected by biochemical test kits.The inhibitory activity of AME onα-glucosidase in vivo and in vitro was determined by enzyme inhibition tests.Results:AME significantly reduced weight gain,postprandial blood glucose,glycosylated hemoglobin and low-density lipoprotein levels in T2DM mice;enhanced glucose tolerance and pancreaticβ-cell function of T2DM mice;inhibitedα-glucosidase activity in mouse intestine in an noncompetitive manner.Conclusion:AME may noncompetitive inhibitα-glucosidase activity and reduce postprandial glucose intake to achieve a therapeutic and regulatory effect on type 2 diabetes.展开更多
Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal co rd injury.They can greatly affect nerve regeneration and functional recovery.However,there is s...Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal co rd injury.They can greatly affect nerve regeneration and functional recovery.However,there is still limited understanding of the peripheral immune inflammato ry response in spinal cord inju ry.In this study.we obtained microRNA expression profiles from the peripheral blood of patients with spinal co rd injury using high-throughput sequencing.We also obtained the mRNA expression profile of spinal cord injury patients from the Gene Expression Omnibus(GEO)database(GSE151371).We identified 54 differentially expressed microRNAs and 1656 diffe rentially expressed genes using bioinformatics approaches.Functional enrichment analysis revealed that various common immune and inflammation-related signaling pathways,such as neutrophil extracellular trap formation pathway,T cell receptor signaling pathway,and nuclear factor-κB signal pathway,we re abnormally activated or inhibited in spinal cord inju ry patient samples.We applied an integrated strategy that combines weighted gene co-expression network analysis,LASSO logistic regression,and SVM-RFE algorithm and identified three biomarke rs associated with spinal cord injury:ANO10,BST1,and ZFP36L2.We verified the expression levels and diagnostic perfo rmance of these three genes in the original training dataset and clinical samples through the receiver operating characteristic curve.Quantitative polymerase chain reaction results showed that ANO20 and BST1 mRNA levels were increased and ZFP36L2 mRNA was decreased in the peripheral blood of spinal cord injury patients.We also constructed a small RNA-mRNA interaction network using Cytoscape.Additionally,we evaluated the proportion of 22 types of immune cells in the peripheral blood of spinal co rd injury patients using the CIBERSORT tool.The proportions of naive B cells,plasma cells,monocytes,and neutrophils were increased while the proportions of memory B cells,CD8^(+)T cells,resting natural killer cells,resting dendritic cells,and eosinophils were markedly decreased in spinal cord injury patients increased compared with healthy subjects,and ANO10,BST1 and ZFP26L2we re closely related to the proportion of certain immune cell types.The findings from this study provide new directions for the development of treatment strategies related to immune inflammation in spinal co rd inju ry and suggest that ANO10,BST2,and ZFP36L2 are potential biomarkers for spinal cord injury.The study was registe red in the Chinese Clinical Trial Registry(registration No.ChiCTR2200066985,December 12,2022).展开更多
●AIM:To investigate the molecular diagnosis of a threegeneration Chinese family affected with aniridia,and further to identify clinically a PAX6 missense mutation in members with atypical aniridia.●METHODS:Eleven fa...●AIM:To investigate the molecular diagnosis of a threegeneration Chinese family affected with aniridia,and further to identify clinically a PAX6 missense mutation in members with atypical aniridia.●METHODS:Eleven family members with and without atypical aniridia were recruited.All family members underwent comprehensive ophthalmic examinations.A combination of whole exome sequencing(WES)and direct Sanger sequencing were performed to uncover the causative mutation.●RESULTS:Among the 11 family members,8 were clinically diagnosed with congenital aniridia(atypical aniridia phenotype).A rare heterozygous mutation c.622C>T(p.Arg208Trp)in exon 8 of PAX6 was identified in all affected family members but not in the unaffected members or in healthy control subjects.●CONCLUSION:A rare missense mutation in the PAX6 gene is found in members of a three-generation Chinese family with congenital atypical aniridia.This result contributes to an increase in the phenotypic spectrum caused by PAX6 missense heterozygous variants and provides useful information for the clinical diagnosis of atypical aniridia,which may also contribute to genetic counselling and family planning.展开更多
Stripe rust,caused by Puccinia striiformis f.sp.tritici(Pst),is a devastating disease in wheat worldwide.Discovering and characterizing new resistance genes/QTL is crucial for wheat breeding programs.In this study,we ...Stripe rust,caused by Puccinia striiformis f.sp.tritici(Pst),is a devastating disease in wheat worldwide.Discovering and characterizing new resistance genes/QTL is crucial for wheat breeding programs.In this study,we fine-mapped and characterized a stripe rust resistance gene,YRAYH,on chromosome arm 5BL in the Chinese wheat landrace Anyuehong(AYH).Evaluations of stripe rust response to prevalent Chinese Pst races in near-isogenic lines derived from a cross of Anyuehong and Taichung 29 showed that YrAYH conferred a high level of resistance at all growth stages.Fine mapping using a large segregating population of 9748 plants,narrowed the YRAYH locus to a 3.7 Mb interval on chromosome arm 5BL that included 61 annotated genes.Transcriptome analysis of two NIL pairs identified 64 upregulated differentially expressed genes(DEGs)in the resistant NILs(NILs-R).Annotations indicated that many of these genes have roles in plant disease resistance pathways.Through a combined approach of fine-mapping and transcriptome sequencing,we identified a serine/threonine-protein kinase SRPK as a candidate gene underlying YrAYH.A unique 25 bp insertion was identified in the NILs-R compared to the NILs-S and previously published wheat genomes.An InDel marker was developed and co-segregated with YrAYH.Agronomic trait evaluation of the NILs suggested that YrAYH not only reduces the impact of stripe rust but was also associated with a gene that increases plant height and spike length.展开更多
Cotton fiber quality is a persistent concern that determines planting benefits and the quality of finished textile products.However,the limitations of measurement instruments have hindered the accurate evaluation of s...Cotton fiber quality is a persistent concern that determines planting benefits and the quality of finished textile products.However,the limitations of measurement instruments have hindered the accurate evaluation of some important fiber characteristics such as fiber maturity,fineness,and neps,which in turn has impeded the genetic improvement and industrial utilization of cotton fiber.Here,12 single fiber quality traits were measured using Advanced Fiber Information System(AFIS)equipment among 383 accessions of upland cotton(Gossypium hirsutum L.).In addition,eight conventional fiber quality traits were assessed by the High Volume Instrument(HVI)System.Genome-wide association study(GWAS),linkage disequilibrium(LD)block genotyping and functional identification were conducted sequentially to uncover the associated elite loci and candidate genes of fiber quality traits.As a result,the previously reported pleiotropic locus FL_D11 regulating fiber length-related traits was identified in this study.More importantly,three novel pleiotropic loci(FM_A03,FF_A05,and FN_A07)regulating fiber maturity,fineness and neps,respectively,were detected based on AFIS traits.Numerous highly promising candidate genes were screened out by integrating RNA-seq and qRT-PCR analyses,including the reported GhKRP6 for fiber length,the newly identified GhMAP8 for maturity and GhDFR for fineness.The origin and evolutionary analysis of pleiotropic loci indicated that the selection pressure on FL_D11,FM_A03 and FF_A05 increased as the breeding period approached the present and the origins of FM_A03 and FF_A05 were traced back to cotton landraces.These findings reveal the genetic basis underlying fiber quality and provide insight into the genetic improvement and textile utilization of fiber in G.hirsutum.展开更多
Verticillium wilt(VW),induced by the soil-borne fungus Verticillium dahliae(Vd),poses a substantial threat to a diverse array of plant species.Employing molecular breeding technology for the development of cotton vari...Verticillium wilt(VW),induced by the soil-borne fungus Verticillium dahliae(Vd),poses a substantial threat to a diverse array of plant species.Employing molecular breeding technology for the development of cotton varieties with heightened resistance to VW stands out as one of the most efficacious protective measures.In this study,we successfully generated two stable transgenic lines of cotton(Gossypium hirsutum L.),VdThitRNAi-1 and VdThit-RNAi-2,using host-induced gene silencing(HIGS)technology to introduce double-stranded RNA(dsRNA)targeting the thiamine transporter protein gene(VdThit).Southern blot analysis confirmed the presence of a single-copy insertion in each line.Microscopic examination showed marked reductions in the colonization and spread of Vd-mCherry in the roots of VdThit-RNAi cotton compared to wild type(WT).The corresponding disease index and fungal biomass of VdThit-RNAi-1/2 also exhibited significant reductions.Real-time quantitative PCR(qRT-PCR)analysis demonstrated a substantial inhibition of VdThit expression following prolonged inoculation of VdThit-RNAi cotton.Small RNA sequencing(sRNA-Seq)analysis revealed the generation of a substantial number of VdThit-specific siRNAs in the VdThit-RNAi transgenic lines.Additionally,the silencing of VdThit by the siVdThit produced by VdThit-RNAi-1/2 resulted in the elevated expression of multiple genes involved in the thiamine biosynthesis pathway in Vd.Under field conditions,VdThit-RNAi transgenic cotton exhibited significantly enhanced disease resistance and yield compared with WT.In summary,our findings underscore the efficacy of HIGS targeting VdThit in restraining the infection and spread of Vd in cotton,thereby potentially enabling the development of cotton breeding as a promising strategy for managing VW.展开更多
基金the National Natural Sci-ence Foundation of China(No.31972789)the Industrial Development Project of Qingdao City(No.20-3-4-16-nsh)the Science and Technology Development Pro-ject of Weihai City(No.2018NS01).
文摘The Ras gene,a conserved member of the insulin pathway,andβ-glucosidase gene,an important cellulase,are two important growth-related genes.However,there is no study on the association between mutations of these two genes and growth traits in bivalves.Here,the polymorphism of these two genes in Crassostrea gigas were revealed.Their association with growth traits was evaluated in 290 oysters from five families,and was further confirmed in another 186 oysters from three fast-growing strains.Seventeen and twelve SNPs were identified in the Ras gene andβ-glucosidase gene,respectively.Among these SNPs,four SNPs in each gene(Ras:C.86C>A,C.90T>C,C.112A>G and C.118G>A;β-glucosidase:C.247G>A,C.284C>T,C.1260C>T and C.1293T>C)were significantly(P<0.05)associated with the growth of these oysters.Furthermore,eight and nine haplotypes were constructed in the Ras gene andβ-glucosidase gene,respectively.Oysters with both haplotypes R-Hap5(CCAA)andβ-Hap7(ACCT),or with both R-Hap 6(ATGG)andβ-Hap 6(ACTC),or with both R-Hap 6 andβ-Hap 9(ACTT),or with both R-Hap 7(ATAA)andβ-Hap 7,showed the highest growth performances.These results provide candidate markers for selecting C.gigas with fast growth.
基金supported by the General Research Fund of Hong Kong (14105820)。
文摘α-Glucosidase inhibitors are effective in controlling postprandial hyperglycemia,which play crucial roles in the management of type 2 diabetes.Protocatechuic acid(PCA)is one of phenolic acids existing not only in various plant foods but also as a major microbial metabolite of dietary anthocyanins in the large colon.The present study investigated the inhibitory mechanism of PCA on a-glucosidase in vitro and examined its effect on postprandial blood glucose levels in vivo.Results from in vitro experiments demonstrated that PCA was a mix-type inhibitor of a-glucosidase.Driven by hydrogen bonds and van der Waals interactions,PCA reversibly bound withα-glucosidase to form a stable a-glucosidase-PCA complex in a spontaneous manner.The computational simulation found that PCA could insert into the active cavity of a-glucosidase and establish hydrogen bonds with catalytic amino acid residues.PCA binding aroused the steric hindrance for substrates to enter active sites and caused the structural changes of interacted catalytic amino acid residues.PCA also exhibited postprandial hypoglycemic capacity in diabetic mice.This study may provide the theoretical basis for the application of PCA as an active ingredient of functional foods in dietary management of diabetes.
基金supported by the Deanship of Scientific Research at Umm Al-Qura University(Grant code:22UQU4331128DSR77).
文摘Objective:To investigate the relationship between triterpenoid saponin content and antioxidant,antimicrobial,and α-glucosidase inhibitory activities of 70%ethanolic,butanolic,aqueous,supernate and precipitate extracts of Juglans regia leaves.Methods:Triterpenoid saponins of different Juglans regia leaf extracts were measured by the vanillin method.Antioxidant activity was evaluated against DPPH and ABTS free radicals.We also assessed α-glucosidase inhibitory and antimicrobial activities of the leaf extracts.Pearson’s correlation coefficient was evaluated to determine the correlation between the saponin content and biological activities.Results:The butanolic extract was most effective against DPPH with an IC50of 6.63μg/mL,while the aqueous extract showed the highest scavenging activity against ABTS free radical with an IC50of 42.27μg/mL.Pearson’s correlation analysis indicated a strong negative correlation (r=-0.956) between DPPH radical scavenging activity (IC50) and the saponin content in the samples examined.In addition,the aqueous extract showed the best α-glucosidase inhibitory activity compared with other extracts.All the extracts had fair antibacterial activity against Bacillus subtilis,Escherichia coli,and Klebsiella pneumoniae except for the aqueous extract.Conclusions:Juglans regia extracts show potent antioxidant,antimicrobial,and α-glucosidase inhibitory activities.There is a correlation between saponin levels in Juglans regia leaf extracts and the studied activities.However,additional research is required to establish these relationships by identifying the specific saponin molecules responsible for these activities and elucidating their mechanisms of action.
文摘Objective:To identify alpha-glucosidase inhibitors from Ficus benghalensis and analyze gene set enrichment of regulated protein molecules.Methods:The phytoconstituents of Ficu.s benghalen.sis were queried for inhibitors of alphaglucosidase,also identified as aldose reductase inhibitors.Druglikeness score,absorption,distribution,metabolism,excretion and toxicity profile,biological spectrum,and gene expression were predicated for each compound.Docking study was performed to predict the binding affinity with alpha-glucosidase and aldose reductase and compared with clinically proven molecules.Kyoto Encyclopedia of Genes and Genomes pathway analysis was performed for the regulated genes to identify the modulated pathways.Results:Apigenin,3,4’,5,7-tetrahydroxy-3’-methoxyflavone,and kaempferol were identified as inhibitors of alpha-glucosidase and aldose reductase.Kaempferol was predicted to possess the highest binding affinity with both targets.The p53 signaling pathway was predicted to modulate the majority of protein molecules in diabetes mellitus.All the alpha-glucosidase inhibitors were also predicted as membrane integrity agonist and anti-mutagenic compounds.Conclusions:The current study indicates alpha-glucosidase inhibitors from Ficus benghale,nsis can act as aldose reductase inhibitors after absorption from the intestinal tract.Furthermore,these phytoconstituents are involved in the regulation of numerous protein molecules and pathways.Hence,the anti-diabetic efficacies of these compounds are due to their action on multiple protein molecules and synergistic effects which should be confirmed by future investigations.
基金the National Natural Science Foundation of China(No.31872675)the Cooperation Project with DR PLANT Company(2023).
文摘Four polysaccharides(MCPa,MCPb,MCPc,MCPd)were obtained from Lepidium meyenii Walp.Their structures were characterized by chemical and instrumental methods including total sugar,uronic acid and protein content determi-nation,UV,IR and NMR spectroscopy,as well as monosaccharide composition determination and methylation analy-ses.Four polysaccharides were a group of glucans with different molecular weights ranging from 3.12 to 14.4 kDa,and shared a similar backbone chain consisting of(1→4)-glucose linkages with branches attached to C-3 and C-6.Furthermore,bioactivity assay showed that MCPs had concentration-dependent inhibitory activity onα-glucosidase.MCPb(Mw=10.1 kDa)and MCPc(Mw=5.62 kDa)with moderate molecular weights exhibited higher inhibitory activ-ity compared with MCPa and MCPd.
基金supported by the Major Program of National Agricultural Science and Technology of China(NK20220607)the West Light Foundation of the Chinese Academy of Sciences(2022XBZG_XBQNXZ_A_001)the Sichuan Science and Technology Program,China(2022ZDZX0014)。
文摘Grain weight is one of the key components of wheat(Triticum aestivum L.)yield.Genetic manipulation of grain weight is an efficient approach for improving yield potential in breeding programs.A recombinant inbred line(RIL)population derived from a cross between W7268 and Chuanyu 12(CY12)was employed to detect quantitative trait loci(QTLs)for thousand-grain weight(TGW),grain length(GL),grain width(GW),and the ratio of grain length to width(GLW)in six environments.Seven major QTLs,QGl.cib-2D,QGw.cib-2D,QGw.cib-3B,QGw.cib-4B.1,QGlw.cib-2D.1,QTgw.cib-2D.1 and QTgw.cib-3B.1,were consistently identified in at least four environments and the best linear unbiased estimation(BLUE)datasets,and they explained 2.61 to 34.85%of the phenotypic variance.Significant interactions were detected between the two major TGW QTLs and three major GW loci.In addition,QTgw.cib-3B.1 and QGw.cib-3B were co-located,and the improved TGW at this locus was contributed by GW.Unlike other loci,QTgw.cib-3B.1/QGw.cib-3B had no effect on grain number per spike(GNS).They were further validated in advanced lines using Kompetitive Allele Specific PCR(KASP)markers,and a comparison analysis indicated that QTgw.cib-3B.1/QGw.cib-3B is likely a novel locus.Six haplotypes were identified in the region of this QTL and their distribution frequencies varied between the landraces and cultivars.According to gene annotation,spatial expression patterns,ortholog analysis and sequence variation,the candidate gene of QTgw.cib-3B.1/QGw.cib-3B was predicted.Collectively,the major QTLs and KASP markers reported here provide valuable information for elucidating the genetic architecture of grain weight and for molecular marker-assisted breeding in grain yield improvement.
文摘Noncoding RNAs instruct the Cas9 nuclease to site speifillyl cleave DNA in the CRISPR/Cas9 system.Despite the high incidence of hepatocellular carcinoma(HCC),the patient's outcome is poor.As a result of the emergence of therapeutic resistance in HCC patients,dlinicians have faced difficulties in treating such tumor.In addition,CRISPR/Cas9 screens were used to identify genes that improve the dlinical response of HCC patients.It is the objective of this article to summarize the current understanding of the use of the CRISPR/Cas9 system for the treatment of cancer,with a particular emphasis on HCC as part of the current state of knowledge.Thus,in order to locate recent developments in oncology research,we examined both the Scopus database and the PubMed database.The ability to selectively interfere with gene expression in combinatorial CRISPR/Cas9 screening can lead to the discovery of new effective HCC treatment regimens by combining clinically approved drugs.Drug resistance can be overcome with the help of the CRISPR/Cas9 system.HCC signature genes and resistance to treatment have been uncovered by genome-scale CRISPR activation screening although this method is not without limitations.It has been extensively examined whether CRISPR can be used as a tool for disease research and gene therapy.CRISPR and its applications to tumor research,particularly in HCC,are examined in this study through a review of the literature.
基金supported by the National Key Research and Development Program of China (2021YFF0702201)National Natural Science Foundation of China (81873736,31872779,81830032)+2 种基金Guangzhou Key Research Program on Brain Science (202007030008)Department of Science and Technology of Guangdong Province (2021ZT09Y007,2020B121201006,2018B030337001,2021A1515012526)Natural Science Foundation of Guangdong Province (2021A1515012526,2022A1515012651)。
文摘Neurodegenerative diseases(NDs)are a group of debilitating neurological disorders that primarily affect elderly populations and include Alzheimer's disease(AD),Parkinson's disease(PD),Huntington's disease(HD),and amyotrophic lateral sclerosis(ALS).Currently,there are no therapies available that can delay,stop,or reverse the pathological progression of NDs in clinical settings.As the population ages,NDs are imposing a huge burden on public health systems and affected families.Animal models are important tools for preclinical investigations to understand disease pathogenesis and test potential treatments.While numerous rodent models of NDs have been developed to enhance our understanding of disease mechanisms,the limited success of translating findings from animal models to clinical practice suggests that there is still a need to bridge this translation gap.Old World nonhuman primates(NHPs),such as rhesus,cynomolgus,and vervet monkeys,are phylogenetically,physiologically,biochemically,and behaviorally most relevant to humans.This is particularly evident in the similarity of the structure and function of their central nervous systems,rendering such species uniquely valuable for neuroscience research.Recently,the development of several genetically modified NHP models of NDs has successfully recapitulated key pathologies and revealed novel mechanisms.This review focuses on the efficacy of NHPs in modeling NDs and the novel pathological insights gained,as well as the challenges associated with the generation of such models and the complexities involved in their subsequent analysis.
基金Supported by National Natural Science Foundation of China,No.82100594.
文摘BACKGROUND Helicobacter pylori(H.pylori)infection is related to various extragastric diseases including type 2 diabetes mellitus(T2DM).However,the possible mechanisms connecting H.pylori infection and T2DM remain unknown.AIM To explore potential molecular connections between H.pylori infection and T2DM.METHODS We extracted gene expression arrays from three online datasets(GSE60427,GSE27411 and GSE115601).Differentially expressed genes(DEGs)commonly present in patients with H.pylori infection and T2DM were identified.Hub genes were validated using human gastric biopsy samples.Correlations between hub genes and immune cell infiltration,miRNAs,and transcription factors(TFs)were further analyzed.RESULTS A total of 67 DEGs were commonly presented in patients with H.pylori infection and T2DM.Five significantly upregulated hub genes,including TLR4,ITGAM,C5AR1,FCER1G,and FCGR2A,were finally identified,all of which are closely related to immune cell infiltration.The gene-miRNA analysis detected 13 miRNAs with at least two gene cross-links.TF-gene interaction networks showed that TLR4 was coregulated by 26 TFs,the largest number of TFs among the 5 hub genes.CONCLUSION We identified five hub genes that may have molecular connections between H.pylori infection and T2DM.This study provides new insights into the pathogenesis of H.pylori-induced onset of T2DM.
基金supported by the National Natural Science Foundation of China,No.81870975(to SZ)。
文摘Exosomes exhibit complex biological functions and mediate a variety of biological processes,such as promoting axonal regeneration and functional recove ry after injury.Long non-coding RNAs(IncRNAs)have been reported to play a crucial role in axonal regeneration.Howeve r,the role of the IncRNA-microRNAmessenger RNA(mRNA)-competitive endogenous RNA(ceRNA)network in exosome-mediated axonal regeneration remains unclear.In this study,we performed RNA transcriptome sequencing analysis to assess mRNA expression patterns in exosomes produced by cultured fibroblasts(FC-EXOs)and Schwann cells(SCEXOs).Diffe rential gene expression analysis,Gene Ontology analysis,Kyoto Encyclopedia of Genes and Genomes analysis,and protein-protein intera ction network analysis were used to explo re the functions and related pathways of RNAs isolated from FC-EXOs and SC-EXOs.We found that the ribosome-related central gene Rps5 was enriched in FC-EXOs and SC-EXOs,which suggests that it may promote axonal regeneration.In addition,using the miRWalk and Starbase prediction databases,we constructed a regulatory network of ceRNAs targeting Rps5,including 27 microRNAs and five IncRNAs.The ceRNA regulatory network,which included Ftx and Miat,revealed that exsosome-derived Rps5 inhibits scar formation and promotes axonal regeneration and functional recovery after nerve injury.Our findings suggest that exosomes derived from fibro blast and Schwann cells could be used to treat injuries of peripheral nervous system.
基金supported by the Jiangsu Natural Science Foundation,China(BK20231468)the Fundamental Research Funds for the Central Universities,China(ZJ24195012)+3 种基金the National Natural Science Foundation in China(31871668)the Jiangsu Key R&D Program,China(BE2022384)the Xinjiang Uygur Autonomous Region Science and Technology Support Program,China(2021E02003)the Jiangsu Collaborative Innovation Center for Modern Crop Production Project,China(No.10)。
文摘Root system architecture plays an essential role in water and nutrient acquisition in plants,and it is significantly involved in plant adaptations to various environmental stresses.In this study,a panel of 242 cotton accessions was collected to investigate six root morphological traits at the seedling stage,including main root length(MRL),root fresh weight(RFW),total root length(TRL),root surface area(RSA),root volume(RV),and root average diameter(AvgD).The correlation analysis of the six root morphological traits revealed strong positive correlations of TRL with RSA,as well as RV with RSA and AvgD,whereas a significant negative correlation was found between TRL and AvgD.Subsequently,a genome-wide association study(GWAS)was performed using the root phenotypic and genotypic data reported previously for the 242 accessions using 56,010 single nucleotide polymorphisms(SNPs)from the CottonSNP80K array.A total of 41 quantitative trait loci(QTLs)were identified,including nine for MRL,six for RFW,nine for TRL,12 for RSA,12 for RV and two for AvgD.Among them,eight QTLs were repeatedly detected in two or more traits.Integrating these results with a transcriptome analysis,we identified 17 candidate genes with high transcript values of transcripts per million(TPM)≥30 in the roots.Furthermore,we functionally verified the candidate gene GH_D05G2106,which encodes a WPP domain protein 2in root development.A virus-induced gene silencing(VIGS)assay showed that knocking down GH_D05G2106significantly inhibited root development in cotton,indicating its positive role in root system architecture formation.Collectively,these results provide a theoretical basis and candidate genes for future studies on cotton root developmental biology and root-related cotton breeding.
文摘Alzheimer’s disease is a progressive neurodegenerative disorder and the most common cause of dementia that principally affects older adults.Pathogenic factors,such as oxidative stress,an increase in acetylcholinesterase activity,mitochondrial dysfunction,genotoxicity,and neuroinflammation are present in this syndrome,which leads to neurodegeneration.Neurodegenerative pathologies such as Alzheimer’s disease are considered late-onset diseases caused by the complex combination of genetic,epigenetic,and environmental factors.There are two main types of Alzheimer’s disease,known as familial Alzheimer’s disease(onset<65 years)and late-onset or sporadic Alzheimer’s disease(onset≥65 years).Patients with familial Alzheimer’s disease inherit the disease due to rare mutations on the amyloid precursor protein(APP),presenilin 1 and 2(PSEN1 and PSEN2)genes in an autosomaldominantly fashion with closely 100%penetrance.In contrast,a different picture seems to emerge for sporadic Alzheimer’s disease,which exhibits numerous non-Mendelian anomalies suggesting an epigenetic component in its etiology.Importantly,the fundamental pathophysiological mechanisms driving Alzheimer’s disease are interfaced with epigenetic dysregulation.However,the dynamic nature of epigenetics seems to open up new avenues and hope in regenerative neurogenesis to improve brain repair in Alzheimer’s disease or following injury or stroke in humans.In recent years,there has been an increase in interest in using natural products for the treatment of neurodegenerative illnesses such as Alzheimer’s disease.Through epigenetic mechanisms,such as DNA methylation,non-coding RNAs,histone modification,and chromatin conformation regulation,natural compounds appear to exert neuroprotective effects.While we do not purport to cover every in this work,we do attempt to illustrate how various phytochemical compounds regulate the epigenetic effects of a few Alzheimer’s disease-related genes.
基金supported by 2020 College Students Innovation and Entrepreneurship Training Program(X202011810069)the National Natural Science Foundation of China(81460591)。
文摘Objective:To explore the anti-diabetic effects and its underlying mechanism of Annona muricata Linn fruit ethanol extract(AME).Methods:Streptozotocin-induced type 2 diabetic(T2DM)mouse model was constructed.Those diabetic mice were randomly grouped and given 50 mg/kg acarbose or AME(200 mg/kg,100 mg/kg or 50 mg/kg)for four weeks.The body weight,postprandial blood glucose and glycosylated hemoglobin levels were measured during the administration.After the administration,a glucose tolerance test was performed,and the levels of triglycerides,cholesterol and low-density lipoproteins in mice were detected by biochemical test kits.The inhibitory activity of AME onα-glucosidase in vivo and in vitro was determined by enzyme inhibition tests.Results:AME significantly reduced weight gain,postprandial blood glucose,glycosylated hemoglobin and low-density lipoprotein levels in T2DM mice;enhanced glucose tolerance and pancreaticβ-cell function of T2DM mice;inhibitedα-glucosidase activity in mouse intestine in an noncompetitive manner.Conclusion:AME may noncompetitive inhibitα-glucosidase activity and reduce postprandial glucose intake to achieve a therapeutic and regulatory effect on type 2 diabetes.
基金supported by the Notional Natural Science Foundation of China,No.81960417 (to JX)Guangxi Key Research and Development Program,No.GuiKeA B20159027 (to JX)the Natural Science Foundation of Guangxi Zhuang Autonomous Region,No.2022GXNSFBA035545 (to YG)。
文摘Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal co rd injury.They can greatly affect nerve regeneration and functional recovery.However,there is still limited understanding of the peripheral immune inflammato ry response in spinal cord inju ry.In this study.we obtained microRNA expression profiles from the peripheral blood of patients with spinal co rd injury using high-throughput sequencing.We also obtained the mRNA expression profile of spinal cord injury patients from the Gene Expression Omnibus(GEO)database(GSE151371).We identified 54 differentially expressed microRNAs and 1656 diffe rentially expressed genes using bioinformatics approaches.Functional enrichment analysis revealed that various common immune and inflammation-related signaling pathways,such as neutrophil extracellular trap formation pathway,T cell receptor signaling pathway,and nuclear factor-κB signal pathway,we re abnormally activated or inhibited in spinal cord inju ry patient samples.We applied an integrated strategy that combines weighted gene co-expression network analysis,LASSO logistic regression,and SVM-RFE algorithm and identified three biomarke rs associated with spinal cord injury:ANO10,BST1,and ZFP36L2.We verified the expression levels and diagnostic perfo rmance of these three genes in the original training dataset and clinical samples through the receiver operating characteristic curve.Quantitative polymerase chain reaction results showed that ANO20 and BST1 mRNA levels were increased and ZFP36L2 mRNA was decreased in the peripheral blood of spinal cord injury patients.We also constructed a small RNA-mRNA interaction network using Cytoscape.Additionally,we evaluated the proportion of 22 types of immune cells in the peripheral blood of spinal co rd injury patients using the CIBERSORT tool.The proportions of naive B cells,plasma cells,monocytes,and neutrophils were increased while the proportions of memory B cells,CD8^(+)T cells,resting natural killer cells,resting dendritic cells,and eosinophils were markedly decreased in spinal cord injury patients increased compared with healthy subjects,and ANO10,BST1 and ZFP26L2we re closely related to the proportion of certain immune cell types.The findings from this study provide new directions for the development of treatment strategies related to immune inflammation in spinal co rd inju ry and suggest that ANO10,BST2,and ZFP36L2 are potential biomarkers for spinal cord injury.The study was registe red in the Chinese Clinical Trial Registry(registration No.ChiCTR2200066985,December 12,2022).
文摘●AIM:To investigate the molecular diagnosis of a threegeneration Chinese family affected with aniridia,and further to identify clinically a PAX6 missense mutation in members with atypical aniridia.●METHODS:Eleven family members with and without atypical aniridia were recruited.All family members underwent comprehensive ophthalmic examinations.A combination of whole exome sequencing(WES)and direct Sanger sequencing were performed to uncover the causative mutation.●RESULTS:Among the 11 family members,8 were clinically diagnosed with congenital aniridia(atypical aniridia phenotype).A rare heterozygous mutation c.622C>T(p.Arg208Trp)in exon 8 of PAX6 was identified in all affected family members but not in the unaffected members or in healthy control subjects.●CONCLUSION:A rare missense mutation in the PAX6 gene is found in members of a three-generation Chinese family with congenital atypical aniridia.This result contributes to an increase in the phenotypic spectrum caused by PAX6 missense heterozygous variants and provides useful information for the clinical diagnosis of atypical aniridia,which may also contribute to genetic counselling and family planning.
基金supported by grants from the Major Program of National Agricultural Science and Technology of China(NK20220607)the National Natural Science Foundation of China(32272059 and 31971883)the Science and Technology Department of Sichuan Province(2021YFYZ0002,2022ZDZX0014,and 2023NSFSC1995)。
文摘Stripe rust,caused by Puccinia striiformis f.sp.tritici(Pst),is a devastating disease in wheat worldwide.Discovering and characterizing new resistance genes/QTL is crucial for wheat breeding programs.In this study,we fine-mapped and characterized a stripe rust resistance gene,YRAYH,on chromosome arm 5BL in the Chinese wheat landrace Anyuehong(AYH).Evaluations of stripe rust response to prevalent Chinese Pst races in near-isogenic lines derived from a cross of Anyuehong and Taichung 29 showed that YrAYH conferred a high level of resistance at all growth stages.Fine mapping using a large segregating population of 9748 plants,narrowed the YRAYH locus to a 3.7 Mb interval on chromosome arm 5BL that included 61 annotated genes.Transcriptome analysis of two NIL pairs identified 64 upregulated differentially expressed genes(DEGs)in the resistant NILs(NILs-R).Annotations indicated that many of these genes have roles in plant disease resistance pathways.Through a combined approach of fine-mapping and transcriptome sequencing,we identified a serine/threonine-protein kinase SRPK as a candidate gene underlying YrAYH.A unique 25 bp insertion was identified in the NILs-R compared to the NILs-S and previously published wheat genomes.An InDel marker was developed and co-segregated with YrAYH.Agronomic trait evaluation of the NILs suggested that YrAYH not only reduces the impact of stripe rust but was also associated with a gene that increases plant height and spike length.
基金supported by the National Key Research and Development Program of China(2022YFD1200300)the Central Plain Scholar Program,China(234000510004)the National Supercomputing Center in Zhengzhou,China。
文摘Cotton fiber quality is a persistent concern that determines planting benefits and the quality of finished textile products.However,the limitations of measurement instruments have hindered the accurate evaluation of some important fiber characteristics such as fiber maturity,fineness,and neps,which in turn has impeded the genetic improvement and industrial utilization of cotton fiber.Here,12 single fiber quality traits were measured using Advanced Fiber Information System(AFIS)equipment among 383 accessions of upland cotton(Gossypium hirsutum L.).In addition,eight conventional fiber quality traits were assessed by the High Volume Instrument(HVI)System.Genome-wide association study(GWAS),linkage disequilibrium(LD)block genotyping and functional identification were conducted sequentially to uncover the associated elite loci and candidate genes of fiber quality traits.As a result,the previously reported pleiotropic locus FL_D11 regulating fiber length-related traits was identified in this study.More importantly,three novel pleiotropic loci(FM_A03,FF_A05,and FN_A07)regulating fiber maturity,fineness and neps,respectively,were detected based on AFIS traits.Numerous highly promising candidate genes were screened out by integrating RNA-seq and qRT-PCR analyses,including the reported GhKRP6 for fiber length,the newly identified GhMAP8 for maturity and GhDFR for fineness.The origin and evolutionary analysis of pleiotropic loci indicated that the selection pressure on FL_D11,FM_A03 and FF_A05 increased as the breeding period approached the present and the origins of FM_A03 and FF_A05 were traced back to cotton landraces.These findings reveal the genetic basis underlying fiber quality and provide insight into the genetic improvement and textile utilization of fiber in G.hirsutum.
基金supported by the National Key Research and Development Program of China(2022YFD1200300)the National Natural Science Foundation of China(32072376 and 32372515)+3 种基金Winall Hi-tech Seed Co.,Ltd.,China(GMLM2023)the Nanfan Special Project of Chinese Academy of Agricultural Sciences(CAAS)(ZDXM2303 and YBXM2415)the Natural Science Foundation of Hebei Province,China(C2022204205)the Agricultural Science and Technology Innovation Program of CAAS。
文摘Verticillium wilt(VW),induced by the soil-borne fungus Verticillium dahliae(Vd),poses a substantial threat to a diverse array of plant species.Employing molecular breeding technology for the development of cotton varieties with heightened resistance to VW stands out as one of the most efficacious protective measures.In this study,we successfully generated two stable transgenic lines of cotton(Gossypium hirsutum L.),VdThitRNAi-1 and VdThit-RNAi-2,using host-induced gene silencing(HIGS)technology to introduce double-stranded RNA(dsRNA)targeting the thiamine transporter protein gene(VdThit).Southern blot analysis confirmed the presence of a single-copy insertion in each line.Microscopic examination showed marked reductions in the colonization and spread of Vd-mCherry in the roots of VdThit-RNAi cotton compared to wild type(WT).The corresponding disease index and fungal biomass of VdThit-RNAi-1/2 also exhibited significant reductions.Real-time quantitative PCR(qRT-PCR)analysis demonstrated a substantial inhibition of VdThit expression following prolonged inoculation of VdThit-RNAi cotton.Small RNA sequencing(sRNA-Seq)analysis revealed the generation of a substantial number of VdThit-specific siRNAs in the VdThit-RNAi transgenic lines.Additionally,the silencing of VdThit by the siVdThit produced by VdThit-RNAi-1/2 resulted in the elevated expression of multiple genes involved in the thiamine biosynthesis pathway in Vd.Under field conditions,VdThit-RNAi transgenic cotton exhibited significantly enhanced disease resistance and yield compared with WT.In summary,our findings underscore the efficacy of HIGS targeting VdThit in restraining the infection and spread of Vd in cotton,thereby potentially enabling the development of cotton breeding as a promising strategy for managing VW.