A series of homo and copolymers of styrene (ST) and 2-hydroxyethyl methacrylate (HEMA) in three different media (bulk, tetrahydrofuran, and benzene) have been investigated by free radical polymerization method. The sa...A series of homo and copolymers of styrene (ST) and 2-hydroxyethyl methacrylate (HEMA) in three different media (bulk, tetrahydrofuran, and benzene) have been investigated by free radical polymerization method. The samples obtained from the synthesis were characterized by Fourier Transform-Infrared spectroscopy (FT-IR), proton nuclear magnetic resonance spectroscopy (<sup>1</sup>H NMR), atomic force microscopy (AFM), and differential scanning calorimetry (DSC). The results show that the synthesis of the polymers is more feasible under neat conditions rather than solvent directed reaction. Moreover, the DSC data shows that the polystyrene obtained is amorphous in nature and therefore displayed only a glass transition signal rather than crystallization and melting peaks. In addition, this study indicates that homolopolymerization of styrene via free radical polymerization tends to be preferable in less polar solvents like THF than in non-polar solvents like benzene. Benzene might destabilize the formation of the reactive radicals leading to the formation of the products. In summary, the homolpolymerization of styrene is more feasible than the homopolymerization 2-hydroxyethyl methacrylate under the experimental setup used. Styrene is more reactive than 2-hydroxyethyl methacrylate than free radical polymerization reaction due in part of the generation of the benzylic radical intermediate which is more stable leading to the formation of products than alkyl radical which are less stable. Furthermore, polymerization of styrene under neat conditions is preferable in solvent-assisted environments. The choice of solvent for the synthesis of these polymers is crucial and therefore the selection of solvent that leads to the formation of a more stable reaction intermediate is more favorable. It is worth noting that the structure of the proposed copolymer consists of a highly polar and hydrophilic monomer, 2-hydroxyethyl methacrylate and a highly non-polar and hydrophobic monomer, styrene. These functionalities constitute an amphiphilic copolymer with diverse characteristics. A plausible explanation underlying our observations is that the reaction conditions employed in the synthesis of these copolymers might not be the right route required under free radical polymerization.展开更多
To obtain porous alumina ceramic with high strength,a novel gelcasting system based on 2-hydroxyethyl methacrylate(HEMA)dissolved in tert-butyl alcohol(TBA)was developed.The polymerization of the HEMA-TBA gelcasting s...To obtain porous alumina ceramic with high strength,a novel gelcasting system based on 2-hydroxyethyl methacrylate(HEMA)dissolved in tert-butyl alcohol(TBA)was developed.The polymerization of the HEMA-TBA gelcasting system,the thermal behavior of obtained green body,and the microstructures and mechanical properties of the sintered bodies were investigated by rheometer,TG-DSC,SEM and bending strength testing,respectively.The results show that,(1)10 mg/mL of the initiator(benzoyl peroxide)is the optimal amount for polymerization of this gelscasting system at 25 ℃;(2)The alumina suspension of the HEMA-TBA gelcasting system showing shear-thinning behavior is sufficiently low for gelcasting process;(3)The bending strength of porous alumina ceramic samples,whose porosities range from 42% to 56%,is from(8±0.5)to(91±4.5)MPa.展开更多
An efficient protocol for the synthesis of N^6-(2-Hydroxyethyl)adenosine and its analogues through nucleophilic substitution was developed. All the reactions were completed in 10 rain under microwave irradiation. Us...An efficient protocol for the synthesis of N^6-(2-Hydroxyethyl)adenosine and its analogues through nucleophilic substitution was developed. All the reactions were completed in 10 rain under microwave irradiation. Using water as solvent makes our method eco-friendly and easy to handle with.展开更多
Studies on the degradation process of waste polyethylene terephthalate(PET)have become increasingly mature,but there are relatively few studies on the separation of degradation products.The products contain many compo...Studies on the degradation process of waste polyethylene terephthalate(PET)have become increasingly mature,but there are relatively few studies on the separation of degradation products.The products contain many components and the separation of which is difficult.Therefore,the study on phase equilibrium thermodynamics of bis-2-hydroxyethyl terephthalate(BHET)is of great theoretical significance and practical value to provide basic data for the BHET crystallization separation.In this work,the degraded products were purified and characterized.The solubility of BHET in methanol,ethanol,ethylene glycol,water and the mixture of ethylene glycol+water were determined by static method.The experimental results were correlated with different models,such as ideal solution(IS)model,λh equation,Apelblat equation and NRTL model.Based on the van’t Hoff equation,the mixing Gibbs energy,enthalpy and entropy were calculated.From this work,the basic data which can be used to guide the crystallization process of BHET were obtained,including solubility data,correlation model and thermodynamic properties.展开更多
Silk was grafted using 2-hydroxyethyl methacrylate(HEMA)by atom transfer radical polymerization(ATRP)method.The amino groups and hydroxyl groups on the side chains of the silk fibroin was reacted with 2-bromoisobutyry...Silk was grafted using 2-hydroxyethyl methacrylate(HEMA)by atom transfer radical polymerization(ATRP)method.The amino groups and hydroxyl groups on the side chains of the silk fibroin was reacted with 2-bromoisobutyryl bromide(BriB-Br)to obtain efficient macroinitiator for ATRP.And the macroinitiator was grafted with HEMA in water aqueous using CuBr/N,N,N',N",N"-pentamethyldiethylenetriamine(PMDETA)as catalyst system.The effects of monomer concentration,the proportion of CuBr and PMDETA,grafting temperature and time on the silk grafting were discussed,and the optimal grafting technology was obtained.FT-IR characterization of the grafted silk showed a peak corresponding to HEMA,which indicated that HEMA was grafted onto the surface of silk.ATRP method could be applied on the silk modification and this technique provided a new way for silk grafting.展开更多
A simple,eco-friendly.sensitive and economic flow injection spectrofluorimetric method was developed for the determination of O-(β-hydroxyethyl)rutosidcs.The procedure was based on the use of an anionic surfactant ...A simple,eco-friendly.sensitive and economic flow injection spectrofluorimetric method was developed for the determination of O-(β-hydroxyethyl)rutosidcs.The procedure was based on the use of an anionic surfactant such as sodium dodecyl sulfate to provide an appreciable O-(β-hydroxyethyl)rutosides fluorescence enhancement,increasing considerably the sensitivity of detection.All the variables affecting the fluorescence intensity were studied and optimized.The flow rate was 5 mL/min with detection at 450 nm(after excitation at 346 nm).A linear correlation between drug amount and peak area was established for 0-(β-hydroxyethyl)rulosides in the range of 0.01-200 μg/mL with a detection limit of0.001 μg/mL(s/n = 3).Validation processes were performed by recovering studies with satisfactory results.The new methodology can be employed for the routine analysis of 0-(P-hydroxyethyl)rutosides in bulks as well as in commercial formulations.展开更多
Lithium aluminium amide [LiAI(NHR)4] 5 obtained by treating the primary amine 4 with LiAlH4 could promote the ring opening of epoxide 2 and led to high regioselective product of racemic bis[2-(6-fluoro-2-chromanyl...Lithium aluminium amide [LiAI(NHR)4] 5 obtained by treating the primary amine 4 with LiAlH4 could promote the ring opening of epoxide 2 and led to high regioselective product of racemic bis[2-(6-fluoro-2-chromanyl)-2-hydroxyethyl]amine methanesulfonic acid salt 7.展开更多
Polymer science encompasses a different range of materials critical to industries spanning from packaging to biomedicine. Understanding the synthesis, characterization, and applications of common homopolymers and copo...Polymer science encompasses a different range of materials critical to industries spanning from packaging to biomedicine. Understanding the synthesis, characterization, and applications of common homopolymers and copolymers is fundamental to advancing polymer research and development. In this comprehensive review, we explore various preparation methods, including free radical, anionic, and cationic polymerization, utilized for synthesizing homopolymers and copolymers. Furthermore, we investigate solvent choices commonly employed for polymer characterization, ranging from neat conditions, polar protic and polar aprotic solvents. We also explored characterization techniques, including Fourier Transform Infrared Spectroscopy (FTIR), Nuclear Magnetic Resonance (NMR), Atomic Force Microscopy (AFM), Differential Scanning Calorimetry (DSC), and Thermogravimetric Analysis (TGA). In addition to industrial applications, we highlight the diverse biological applications of homopolymers, poly(2-hydroxyethyl methacrylate) (pHEMA) and polystyrene, which find its extensive use in biomedicine. By synthesizing and analyzing this wealth of information, this review aims to provide a comprehensive understanding of the synthesis, characterization, and applications of homopolymers and copolymers, with a particular focus on their biological applications. This holistic approach not only contributes to advancements in polymer science and technology but also fosters innovation in biomedicine, ultimately benefiting human health and well-being.展开更多
A novel and facile method toward a series of yellow water-borne polyurethane was developed by using an intrinsically colored diol in this paper.The yellow aqueous dispersion PCLD-HENA-PU was synthesized based on isoph...A novel and facile method toward a series of yellow water-borne polyurethane was developed by using an intrinsically colored diol in this paper.The yellow aqueous dispersion PCLD-HENA-PU was synthesized based on isophorone diisocyanate(IPDI), polycaprolactonediol(PCLD) and 2,2-dimethylol propionic acid(DMPA) using a yellow diol N,N-bis(2-hydroxyethyl)-4-nitroaniline (HENA) as a chain extender.Due to the complete reaction of OH group in colorant HENA with NCO group in diisocyanate,a series of stable yellow p...展开更多
The living cationic polymerization of 4-[2-(tert-butyldimethylsiloxy)ethyl]styrene (TBDMES) was studied in methylcyclohexane (MeChx)/methylchloride (MeCl) (50/50 V/V) solvent mixture at -80 degrees C. The initiator 1,...The living cationic polymerization of 4-[2-(tert-butyldimethylsiloxy)ethyl]styrene (TBDMES) was studied in methylcyclohexane (MeChx)/methylchloride (MeCl) (50/50 V/V) solvent mixture at -80 degrees C. The initiator 1,1-diphenylethylene (DPE) capped 2-chloro-2,4,4-trimethylpentane (TMPCl) was formed in situ in conjunction with titanium tetrachloride (TiCl(4)). The Lewis acidity of TiCl(4) was decreased by the addition of titanium(IV) isopropoxide (Ti(OiPr)(4)) to accomplish living polymerization of TBDMES. Hydrolysis of poly(TBDMES) in the presence of tetra-butylammonium fluoride yielded poly[4-(2-hydroxyethyl)styrene] (poly(HOES)). FT-IR, NMR and DSC demonstrated the hydrolysis was complete.展开更多
The copolymerization of 2-hydroxyethyl acrylate (HEA, M//1) and methyl methacrylate (MMA, M//2) in cyclohexanone was studied. The multiple experiments of solution copolymerization with low conversion were carried out...The copolymerization of 2-hydroxyethyl acrylate (HEA, M//1) and methyl methacrylate (MMA, M//2) in cyclohexanone was studied. The multiple experiments of solution copolymerization with low conversion were carried out at two sensitive composition feed points at 60, 80, 100, 120 and 140 degree C, respectively. The composition of the copolymers was analyzed by **1H-NMR. The reactivity ratios which were estimated by the Error-in-Variable Method (EVM) of Mayo-Lewis equation were found to be r//1 equals 0.328, r//2 equals 1.781 for 60 degree C; 0.375, 1.709 for 80 degree C; 0.406, 1.654 for 100 degree C; 0.439, 1.540 for 120 degree C and 0.455, 1.400 for 140 degree C, and the 95% joint confidence intervals of the reactivity ratios were also determined. According to r//1 and r//2, Arrhenius relations and the activity energy difference between the homo- and cross-propagation were calculated. (Author abstract) 12 Refs.展开更多
This work aimed at effectively utilizing the chemically depolymerized waste poly(ethylene terephthalate)(PET) fibers into useful products for the textile industry.PET fibers were glycolytically degraded by excess ...This work aimed at effectively utilizing the chemically depolymerized waste poly(ethylene terephthalate)(PET) fibers into useful products for the textile industry.PET fibers were glycolytically degraded by excess ethylene glycol as depolymerizing agent and zinc acetate dihydrate as catalyst.The glycolysis product,bis(2-hydroxyethyl) terephthalate(BHET),was purified through repeated crystallization to get an average yield above 80%.Then,BHET was nitrated,reduced,and azotized to get diazonium salt.Finally,the produced diazonium salt was coupled with 1-(4-sulfophenyl)-3-methyl-5-pyrazolone to get azo dyestuff.The structures of BHET and azo dyestuff were identified by FT1 R and ^1H NMR spectra and elemental analysis.Nylon filaments dyed by the synthesized azo dyestuff with the dye bath pH from 4.14 to 5.88 showed bright yellow color.The performances of the dyestuff were described with dye uptake,color fastness,K/S,L^*,a^*,b^*.and △E^* values.展开更多
Color stability of dental resin modified glass ionomer (RMGI) has been a challenge to dentistry; therefore, systematic changes in 2-hydroxyethyl methacrylate (HEMA) content were performed experimentally to find an...Color stability of dental resin modified glass ionomer (RMGI) has been a challenge to dentistry; therefore, systematic changes in 2-hydroxyethyl methacrylate (HEMA) content were performed experimentally to find an idea to enhance the color stability. Changes in color (△E*ab) and color coordinates (△L*, △a* and △b*) of experimental 10-50 wt pct HEMA-added dental glass ionomers (HAGIs) and corresponding RMGIs were determined after 5000 cycles of thermocycling. Color changes of HAGIs were not influenced by the HEMA content while △L*, △a* and △b* values were influenced by the HEMA content. Color stability of 30% or 40% HEMA-added HAGIs was not different from those of the commercial RMGIs. Since the influence of HEMA itself on the color stability of HAGIs was limited, compositional modification to increase the color stability of these materials should be developed.展开更多
Multiarm star block copolymers hyperbranched polyethylenimine-b-poly(2-hydroxyethyl methacrylate) (HPEI-b- PHEMA) with average 28 PHEMA arms have been prepared by atom transfer radical polymerization (ATRP) of H...Multiarm star block copolymers hyperbranched polyethylenimine-b-poly(2-hydroxyethyl methacrylate) (HPEI-b- PHEMA) with average 28 PHEMA arms have been prepared by atom transfer radical polymerization (ATRP) of HEMA in a mixed solvent of methanol and water using a core-first strategy. The hyperbranched macroinitiator employed was prepared on the basis of well-defined hyperbranched polyethylenimine with Mw/Mn of 1.04 by amidation with 2-bromo-isobutyryl bromide. The polymerization condition was optimized to prepare star copolymers with narrow dispersity, and the variables included the volume ratio of methanol to water, the molar ratio of initiating site to CuC1 and the molar ratio of [CuCl]:[CuBr2]. Under the optimized polymerization condition, the lowest Mw/Mn value of the obtained star copolymers was around 1.3. Kinetic analysis showed that an induction period existed in the polymerization of HEMA. After this induction period, a linear dependence of ln([M]0/[M]t) on time was observed. The obtained HPEI-b-PHEMA could adsorb hydrophilic molecules. The comparison with the star copolymer with hydrophobic core and hydrophilic PHEMA shell verified that both the hydrophilic core and shell could host the hydrophilic guests, but the amidated HPEI core was more effective than the PHEMA shell.展开更多
One-pot synthesis of magnetic nanogels via photochemical method is reported in this paper. Poly(2-hydroxyethyl methacrylate)(PHEMA) magnetic nanogels are synthesized by in-situ polymeriza-tion of 2-hydroxyethyl methac...One-pot synthesis of magnetic nanogels via photochemical method is reported in this paper. Poly(2-hydroxyethyl methacrylate)(PHEMA) magnetic nanogels are synthesized by in-situ polymeriza-tion of 2-hydroxyethyl methacrylate(HEMA) and N,N'-methylene-bis-(acrylamide)(MBA) in Fe3O4 aqueous suspension under UV irradiation. The structure and compositions of magnetic nanogels are characterized by FTIR,TGA,SEM,TEM and PCS. TGA measurement indicates that magnetic nanogels contain 90% magnetite. Both naked Fe3O4 and magnetic nanogels are superparamagnatic at room temperature according to magnetization curves. The swollen capability of the hydrogel shell is proved by contrasting the particles sizes obtained by SEM,TEM and PCS. Particle diameters can be manipu-lated by changing monomer concentration and irradiation time. A mechanism of the coating process is proposed.展开更多
Phosphazene base,t-BuP2,was employed to catalyze the proton transfer polymerization(PTP)of 2-hydroxyethyl acrylate(HEA),and PTP was further combined with ring-opening polymerization(ROP)to exploit a new type of hybrid...Phosphazene base,t-BuP2,was employed to catalyze the proton transfer polymerization(PTP)of 2-hydroxyethyl acrylate(HEA),and PTP was further combined with ring-opening polymerization(ROP)to exploit a new type of hybrid copolymerization.The studies on homopolymerization showed that t-BuP2 was a particularly efficient catalyst for the polymerization of HEA at room temperature,giving an excellent monomer conversion.Throughout the polymerization,transesterification reactions were unavoidable,which increased the randomness in the structures of the resulting polymers.The studies on copolymerization showed that t-BuP2 could simultaneously catalyze the hybrid copolymerization via the combination of PTP and ROP at 25°C.During copolymerization,HEA not only provided hydroxyl groups to initiate the ROP ofε-caprolactone(CL)but also participated in the polymerization as a monomer for PTP.The copolymer composition was approximately equal to the feed ratio,demonstrating the possibility to adjust the polymeric structure by simply changing the monomer feed ratio.This copolymerization reaction provides a simple method for synthesizing degradable functional copolymers from commercially available materials.Hence,it is important not only in polymer chemistry but also in environmental and biomedical engineering.展开更多
文摘A series of homo and copolymers of styrene (ST) and 2-hydroxyethyl methacrylate (HEMA) in three different media (bulk, tetrahydrofuran, and benzene) have been investigated by free radical polymerization method. The samples obtained from the synthesis were characterized by Fourier Transform-Infrared spectroscopy (FT-IR), proton nuclear magnetic resonance spectroscopy (<sup>1</sup>H NMR), atomic force microscopy (AFM), and differential scanning calorimetry (DSC). The results show that the synthesis of the polymers is more feasible under neat conditions rather than solvent directed reaction. Moreover, the DSC data shows that the polystyrene obtained is amorphous in nature and therefore displayed only a glass transition signal rather than crystallization and melting peaks. In addition, this study indicates that homolopolymerization of styrene via free radical polymerization tends to be preferable in less polar solvents like THF than in non-polar solvents like benzene. Benzene might destabilize the formation of the reactive radicals leading to the formation of the products. In summary, the homolpolymerization of styrene is more feasible than the homopolymerization 2-hydroxyethyl methacrylate under the experimental setup used. Styrene is more reactive than 2-hydroxyethyl methacrylate than free radical polymerization reaction due in part of the generation of the benzylic radical intermediate which is more stable leading to the formation of products than alkyl radical which are less stable. Furthermore, polymerization of styrene under neat conditions is preferable in solvent-assisted environments. The choice of solvent for the synthesis of these polymers is crucial and therefore the selection of solvent that leads to the formation of a more stable reaction intermediate is more favorable. It is worth noting that the structure of the proposed copolymer consists of a highly polar and hydrophilic monomer, 2-hydroxyethyl methacrylate and a highly non-polar and hydrophobic monomer, styrene. These functionalities constitute an amphiphilic copolymer with diverse characteristics. A plausible explanation underlying our observations is that the reaction conditions employed in the synthesis of these copolymers might not be the right route required under free radical polymerization.
基金Project(51202296) supported by the National Natural Science Foundation of China
文摘To obtain porous alumina ceramic with high strength,a novel gelcasting system based on 2-hydroxyethyl methacrylate(HEMA)dissolved in tert-butyl alcohol(TBA)was developed.The polymerization of the HEMA-TBA gelcasting system,the thermal behavior of obtained green body,and the microstructures and mechanical properties of the sintered bodies were investigated by rheometer,TG-DSC,SEM and bending strength testing,respectively.The results show that,(1)10 mg/mL of the initiator(benzoyl peroxide)is the optimal amount for polymerization of this gelscasting system at 25 ℃;(2)The alumina suspension of the HEMA-TBA gelcasting system showing shear-thinning behavior is sufficiently low for gelcasting process;(3)The bending strength of porous alumina ceramic samples,whose porosities range from 42% to 56%,is from(8±0.5)to(91±4.5)MPa.
基金the National Natural Science Foundation of China(No.20372018)
文摘An efficient protocol for the synthesis of N^6-(2-Hydroxyethyl)adenosine and its analogues through nucleophilic substitution was developed. All the reactions were completed in 10 rain under microwave irradiation. Using water as solvent makes our method eco-friendly and easy to handle with.
基金financially supported by the National Key Research and Development Program of China(2019YFC1908204)the National Natural Scientific Fund of China(No.21878292,21776289,21908232,21978291)+1 种基金Innovation Academy forGreen Manufacture,Chinese Academy of Sciences(No.IAGM2020C12,IAGM2020C21 and IAGM-2019-A06)K.C.Wong Education Foundation(No.GJTD-2018-04)。
文摘Studies on the degradation process of waste polyethylene terephthalate(PET)have become increasingly mature,but there are relatively few studies on the separation of degradation products.The products contain many components and the separation of which is difficult.Therefore,the study on phase equilibrium thermodynamics of bis-2-hydroxyethyl terephthalate(BHET)is of great theoretical significance and practical value to provide basic data for the BHET crystallization separation.In this work,the degraded products were purified and characterized.The solubility of BHET in methanol,ethanol,ethylene glycol,water and the mixture of ethylene glycol+water were determined by static method.The experimental results were correlated with different models,such as ideal solution(IS)model,λh equation,Apelblat equation and NRTL model.Based on the van’t Hoff equation,the mixing Gibbs energy,enthalpy and entropy were calculated.From this work,the basic data which can be used to guide the crystallization process of BHET were obtained,including solubility data,correlation model and thermodynamic properties.
基金National Natural Science Foundation of China(No.50673071,No.50973079)Natural Science Fund for Colleges and Universities in Jiangsu Province,China(No.07KJD540188,No.09KJA540001)
文摘Silk was grafted using 2-hydroxyethyl methacrylate(HEMA)by atom transfer radical polymerization(ATRP)method.The amino groups and hydroxyl groups on the side chains of the silk fibroin was reacted with 2-bromoisobutyryl bromide(BriB-Br)to obtain efficient macroinitiator for ATRP.And the macroinitiator was grafted with HEMA in water aqueous using CuBr/N,N,N',N",N"-pentamethyldiethylenetriamine(PMDETA)as catalyst system.The effects of monomer concentration,the proportion of CuBr and PMDETA,grafting temperature and time on the silk grafting were discussed,and the optimal grafting technology was obtained.FT-IR characterization of the grafted silk showed a peak corresponding to HEMA,which indicated that HEMA was grafted onto the surface of silk.ATRP method could be applied on the silk modification and this technique provided a new way for silk grafting.
基金the National University of San Luis(Project 22/Q228)INQUISAL-CONICET(Instituto de Quimica de San Luis-Consejo Nacional de Investigaciones Cientificas y Tecnicas, PIP-CONICET 11220100100405) for the financial support
文摘A simple,eco-friendly.sensitive and economic flow injection spectrofluorimetric method was developed for the determination of O-(β-hydroxyethyl)rutosidcs.The procedure was based on the use of an anionic surfactant such as sodium dodecyl sulfate to provide an appreciable O-(β-hydroxyethyl)rutosides fluorescence enhancement,increasing considerably the sensitivity of detection.All the variables affecting the fluorescence intensity were studied and optimized.The flow rate was 5 mL/min with detection at 450 nm(after excitation at 346 nm).A linear correlation between drug amount and peak area was established for 0-(β-hydroxyethyl)rulosides in the range of 0.01-200 μg/mL with a detection limit of0.001 μg/mL(s/n = 3).Validation processes were performed by recovering studies with satisfactory results.The new methodology can be employed for the routine analysis of 0-(P-hydroxyethyl)rutosides in bulks as well as in commercial formulations.
基金the National 863 Program(No.2003AA323030)the National Natural Science Foundation of China(No.50272069 and No.20472090)for financial support.
文摘Lithium aluminium amide [LiAI(NHR)4] 5 obtained by treating the primary amine 4 with LiAlH4 could promote the ring opening of epoxide 2 and led to high regioselective product of racemic bis[2-(6-fluoro-2-chromanyl)-2-hydroxyethyl]amine methanesulfonic acid salt 7.
文摘Polymer science encompasses a different range of materials critical to industries spanning from packaging to biomedicine. Understanding the synthesis, characterization, and applications of common homopolymers and copolymers is fundamental to advancing polymer research and development. In this comprehensive review, we explore various preparation methods, including free radical, anionic, and cationic polymerization, utilized for synthesizing homopolymers and copolymers. Furthermore, we investigate solvent choices commonly employed for polymer characterization, ranging from neat conditions, polar protic and polar aprotic solvents. We also explored characterization techniques, including Fourier Transform Infrared Spectroscopy (FTIR), Nuclear Magnetic Resonance (NMR), Atomic Force Microscopy (AFM), Differential Scanning Calorimetry (DSC), and Thermogravimetric Analysis (TGA). In addition to industrial applications, we highlight the diverse biological applications of homopolymers, poly(2-hydroxyethyl methacrylate) (pHEMA) and polystyrene, which find its extensive use in biomedicine. By synthesizing and analyzing this wealth of information, this review aims to provide a comprehensive understanding of the synthesis, characterization, and applications of homopolymers and copolymers, with a particular focus on their biological applications. This holistic approach not only contributes to advancements in polymer science and technology but also fosters innovation in biomedicine, ultimately benefiting human health and well-being.
基金the National Natural Science Foundation of China(No.50273035)
文摘A novel and facile method toward a series of yellow water-borne polyurethane was developed by using an intrinsically colored diol in this paper.The yellow aqueous dispersion PCLD-HENA-PU was synthesized based on isophorone diisocyanate(IPDI), polycaprolactonediol(PCLD) and 2,2-dimethylol propionic acid(DMPA) using a yellow diol N,N-bis(2-hydroxyethyl)-4-nitroaniline (HENA) as a chain extender.Due to the complete reaction of OH group in colorant HENA with NCO group in diisocyanate,a series of stable yellow p...
基金supported by the Beijing Municipal Project for Developing Advanced Human Resources for Higher Education(Elastomers and Biomaterials).
文摘The living cationic polymerization of 4-[2-(tert-butyldimethylsiloxy)ethyl]styrene (TBDMES) was studied in methylcyclohexane (MeChx)/methylchloride (MeCl) (50/50 V/V) solvent mixture at -80 degrees C. The initiator 1,1-diphenylethylene (DPE) capped 2-chloro-2,4,4-trimethylpentane (TMPCl) was formed in situ in conjunction with titanium tetrachloride (TiCl(4)). The Lewis acidity of TiCl(4) was decreased by the addition of titanium(IV) isopropoxide (Ti(OiPr)(4)) to accomplish living polymerization of TBDMES. Hydrolysis of poly(TBDMES) in the presence of tetra-butylammonium fluoride yielded poly[4-(2-hydroxyethyl)styrene] (poly(HOES)). FT-IR, NMR and DSC demonstrated the hydrolysis was complete.
文摘The copolymerization of 2-hydroxyethyl acrylate (HEA, M//1) and methyl methacrylate (MMA, M//2) in cyclohexanone was studied. The multiple experiments of solution copolymerization with low conversion were carried out at two sensitive composition feed points at 60, 80, 100, 120 and 140 degree C, respectively. The composition of the copolymers was analyzed by **1H-NMR. The reactivity ratios which were estimated by the Error-in-Variable Method (EVM) of Mayo-Lewis equation were found to be r//1 equals 0.328, r//2 equals 1.781 for 60 degree C; 0.375, 1.709 for 80 degree C; 0.406, 1.654 for 100 degree C; 0.439, 1.540 for 120 degree C and 0.455, 1.400 for 140 degree C, and the 95% joint confidence intervals of the reactivity ratios were also determined. According to r//1 and r//2, Arrhenius relations and the activity energy difference between the homo- and cross-propagation were calculated. (Author abstract) 12 Refs.
基金financially supported by the National High-tech R&D Program of China(863 Program,No.2012AA030313)the Open Project Program of Key Laboratory of Eco-Textiles(Jiangnan University),Ministry of Education,China(No.KLET1115)+1 种基金the Fundamental Research Funds for the Central Universities(No. JUSRP11201)the Cooperative Innovation Fund-Prospective Project of Jiangsu Province,China(No.BY2012060)
文摘This work aimed at effectively utilizing the chemically depolymerized waste poly(ethylene terephthalate)(PET) fibers into useful products for the textile industry.PET fibers were glycolytically degraded by excess ethylene glycol as depolymerizing agent and zinc acetate dihydrate as catalyst.The glycolysis product,bis(2-hydroxyethyl) terephthalate(BHET),was purified through repeated crystallization to get an average yield above 80%.Then,BHET was nitrated,reduced,and azotized to get diazonium salt.Finally,the produced diazonium salt was coupled with 1-(4-sulfophenyl)-3-methyl-5-pyrazolone to get azo dyestuff.The structures of BHET and azo dyestuff were identified by FT1 R and ^1H NMR spectra and elemental analysis.Nylon filaments dyed by the synthesized azo dyestuff with the dye bath pH from 4.14 to 5.88 showed bright yellow color.The performances of the dyestuff were described with dye uptake,color fastness,K/S,L^*,a^*,b^*.and △E^* values.
基金supported by the Korea Science and Engineering Foundation (KOSEF) Science Research Center grant funded by the Korean Ministry of Education,Science and Technology (MEST) through Bone Metabolism Research Center (No.0617-20080007)
文摘Color stability of dental resin modified glass ionomer (RMGI) has been a challenge to dentistry; therefore, systematic changes in 2-hydroxyethyl methacrylate (HEMA) content were performed experimentally to find an idea to enhance the color stability. Changes in color (△E*ab) and color coordinates (△L*, △a* and △b*) of experimental 10-50 wt pct HEMA-added dental glass ionomers (HAGIs) and corresponding RMGIs were determined after 5000 cycles of thermocycling. Color changes of HAGIs were not influenced by the HEMA content while △L*, △a* and △b* values were influenced by the HEMA content. Color stability of 30% or 40% HEMA-added HAGIs was not different from those of the commercial RMGIs. Since the influence of HEMA itself on the color stability of HAGIs was limited, compositional modification to increase the color stability of these materials should be developed.
基金financially supported by the Program for New Century Excellent Talents in Universitiesthe National Natural Science Foundation of China (Nos. 21074088, 31201426)
文摘Multiarm star block copolymers hyperbranched polyethylenimine-b-poly(2-hydroxyethyl methacrylate) (HPEI-b- PHEMA) with average 28 PHEMA arms have been prepared by atom transfer radical polymerization (ATRP) of HEMA in a mixed solvent of methanol and water using a core-first strategy. The hyperbranched macroinitiator employed was prepared on the basis of well-defined hyperbranched polyethylenimine with Mw/Mn of 1.04 by amidation with 2-bromo-isobutyryl bromide. The polymerization condition was optimized to prepare star copolymers with narrow dispersity, and the variables included the volume ratio of methanol to water, the molar ratio of initiating site to CuC1 and the molar ratio of [CuCl]:[CuBr2]. Under the optimized polymerization condition, the lowest Mw/Mn value of the obtained star copolymers was around 1.3. Kinetic analysis showed that an induction period existed in the polymerization of HEMA. After this induction period, a linear dependence of ln([M]0/[M]t) on time was observed. The obtained HPEI-b-PHEMA could adsorb hydrophilic molecules. The comparison with the star copolymer with hydrophobic core and hydrophilic PHEMA shell verified that both the hydrophilic core and shell could host the hydrophilic guests, but the amidated HPEI core was more effective than the PHEMA shell.
基金Supported by the Shanghai Municipal Commission for Special Project of Nanometer Science and Technology (Grant No. 0452nm068)
文摘One-pot synthesis of magnetic nanogels via photochemical method is reported in this paper. Poly(2-hydroxyethyl methacrylate)(PHEMA) magnetic nanogels are synthesized by in-situ polymeriza-tion of 2-hydroxyethyl methacrylate(HEMA) and N,N'-methylene-bis-(acrylamide)(MBA) in Fe3O4 aqueous suspension under UV irradiation. The structure and compositions of magnetic nanogels are characterized by FTIR,TGA,SEM,TEM and PCS. TGA measurement indicates that magnetic nanogels contain 90% magnetite. Both naked Fe3O4 and magnetic nanogels are superparamagnatic at room temperature according to magnetization curves. The swollen capability of the hydrogel shell is proved by contrasting the particles sizes obtained by SEM,TEM and PCS. Particle diameters can be manipu-lated by changing monomer concentration and irradiation time. A mechanism of the coating process is proposed.
基金financially supported by the Natural Science Foundation for Excellent Young Scholar of Jiangsu Province (No. BK20170056)the National Natural Science Foundation of China(No. 21304010)+1 种基金the Opening Project of Key Laboratory of Polymer Processing Engineering (South China University of Technology)Ministry of Education, and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
文摘Phosphazene base,t-BuP2,was employed to catalyze the proton transfer polymerization(PTP)of 2-hydroxyethyl acrylate(HEA),and PTP was further combined with ring-opening polymerization(ROP)to exploit a new type of hybrid copolymerization.The studies on homopolymerization showed that t-BuP2 was a particularly efficient catalyst for the polymerization of HEA at room temperature,giving an excellent monomer conversion.Throughout the polymerization,transesterification reactions were unavoidable,which increased the randomness in the structures of the resulting polymers.The studies on copolymerization showed that t-BuP2 could simultaneously catalyze the hybrid copolymerization via the combination of PTP and ROP at 25°C.During copolymerization,HEA not only provided hydroxyl groups to initiate the ROP ofε-caprolactone(CL)but also participated in the polymerization as a monomer for PTP.The copolymer composition was approximately equal to the feed ratio,demonstrating the possibility to adjust the polymeric structure by simply changing the monomer feed ratio.This copolymerization reaction provides a simple method for synthesizing degradable functional copolymers from commercially available materials.Hence,it is important not only in polymer chemistry but also in environmental and biomedical engineering.