从16 S rRNA甲基化酶的发现、作用机制、基因环境、分布和起源等方面介绍了16 SrRNA甲基化酶介导的氨基糖苷类耐药机制。阐明16 S rRNA甲基化酶是在革兰氏阴性杆菌中新出现的介导对庆大霉素等氨基糖苷类高度耐药的酶;16 S rRNA甲基化酶...从16 S rRNA甲基化酶的发现、作用机制、基因环境、分布和起源等方面介绍了16 SrRNA甲基化酶介导的氨基糖苷类耐药机制。阐明16 S rRNA甲基化酶是在革兰氏阴性杆菌中新出现的介导对庆大霉素等氨基糖苷类高度耐药的酶;16 S rRNA甲基化酶基因位于质粒和转座子上,具有易于传播和扩散的特点,成为临床抗感染的重要问题。展开更多
目的了解氨基糖苷类抗菌药物耐药的铜绿假单胞菌16S r RNA甲基化酶基因和氨基糖苷修饰酶基因的携带情况,探讨铜绿假单胞菌对氨基糖苷类药物的耐药机制。方法收集临床分离的氨基糖苷类抗菌药物耐药的铜绿假单胞菌35株,采用VITEK 2 Compac...目的了解氨基糖苷类抗菌药物耐药的铜绿假单胞菌16S r RNA甲基化酶基因和氨基糖苷修饰酶基因的携带情况,探讨铜绿假单胞菌对氨基糖苷类药物的耐药机制。方法收集临床分离的氨基糖苷类抗菌药物耐药的铜绿假单胞菌35株,采用VITEK 2 Compact全自动微生物分析系统进行鉴定及体外药物敏感性试验,聚合酶链反应(PCR)检测arm-A、rmt-A、rmt-B、rmt-C、rmt-D 5种16S r RNA甲基化酶基因和aac(3)-Ⅰ、aac(3)-Ⅱ、aac(6')-Ⅰb、aac(6')-Ⅱ、ant(3″)-Ⅰ、ant(2″)-Ⅰ6种氨基糖苷修饰酶基因。结果对氨基糖苷类药物耐药的铜绿假单胞菌同时对多种其他抗菌药物耐药,仅碳青霉烯类的亚胺培南耐药率较低,为5.7%。21株检出rmt-B 16S r RNA甲基化酶基因,占60.0%;30株检出氨基糖苷修饰酶基因,占85.7%,其中28株检出aac(3)-Ⅱ基因,占80.0%,18株检出ant(3″)-Ⅰ基因,占51.4%,其余8种基因未检出。结论在铜绿假单胞菌对氨基糖苷类抗菌药物耐药的菌株中,检测出rmt-B 16S r RNA甲基化酶基因和aac(3)-Ⅱ、ant(3″)-Ⅰ氨基糖苷修饰酶基因,铜绿假单胞菌多重耐药现象严重。展开更多
Choosing the appropriate antibiotics to treat bacterial infections has grown more challenging as a result of the emergence of antibiotic-resistant bacteria.Aminoglycosides,as broad-spectrum antibiotics,are increasingl...Choosing the appropriate antibiotics to treat bacterial infections has grown more challenging as a result of the emergence of antibiotic-resistant bacteria.Aminoglycosides,as broad-spectrum antibiotics,are increasingly being used clinically;however,for most effective employment of aminoglycosides,a comprehensive understanding of aminoglycoside resistance genes’prevalence and dissemination is required.Therefore,to better understand the global resistance status of aminoglycoside antibiotics and the prevalence of antibiotic-resistance genes(ARGs)in various bacterial species,this systematic review gathered relevant data from multiple studies.Two primary resistance mechanisms-aminoglycoside enzymatic modification and 16S rRNA methylation-were assessed,and the prevalence of the corresponding ARGs was described.The coexistence of aminoglycoside ARGs with other ARGs was also demonstrated,as was the relationship between aminoglycoside ARGs and resistant phenotypes.The lack of effective therapeutic agents to combat resistant pathogens presents a real threat to public health.The combination of aminoglycosides with other antibiotics may provide a novel treatment strategy.展开更多
目的调查一组耐药鲍曼不动杆菌对氨基糖苷类的耐药机制。方法收集2013年1至3月江苏省淮安市第一人民医院住院患者标本中分离到的鲍曼不动杆菌共32株,用分子鉴定法确认为鲍曼不动杆菌,再用聚合酶链反应(PCR)方法分析9种氨基糖苷类修饰酶...目的调查一组耐药鲍曼不动杆菌对氨基糖苷类的耐药机制。方法收集2013年1至3月江苏省淮安市第一人民医院住院患者标本中分离到的鲍曼不动杆菌共32株,用分子鉴定法确认为鲍曼不动杆菌,再用聚合酶链反应(PCR)方法分析9种氨基糖苷类修饰酶基因与7种16S r RNA甲基化酶基因。结果本组32株耐药鲍曼不动杆菌共检出5种氨基糖苷类修饰酶基因:aac(2')-Ib 32株(100.0%)、aac(3)-I 15株(46.9%)、aac(6')-Ib 19株(59.4%)、ant(3'')-I 20株(62.5%)、aph(3')-I 19株(59.4%),与1种16S r RNA甲基化酶基因arm A 25株(78.1%)。阳性基因共分为7种检测模式,其中以aac(2')-Ib+aac(3)-I+aac(6')-Ib+ant(3'')-I+aph(3')-I+arm A等6种基因均阳性的模式最高,为12株(37.5%)。结论产5种氨基糖苷类修饰酶基因(aac(2')-Ib、aac(3)-I、aac(6')-Ib、ant(3'')-I、aph(3')-I)与1种16S r RNA甲基化酶基因arm A是本组耐药鲍曼不动杆菌对氨基糖苷类耐药的重要原因。在鲍曼不动杆菌临床分离株检出aac(2')-Ib型氨基糖苷类修饰酶基因为国内首次报道。展开更多
为了解铜绿假单胞菌(PA)的氨基糖苷类耐药机制,用纸片扩散法检测分离自鸡场的50株PA对6种氨基糖苷类药物的敏感性,用PCR法检测7种氨基糖苷类修饰酶(AMEs)基因和5种16 S rRNA甲基化酶基因。结果显示:50株PA中45株对氨基糖苷类药物耐药,3...为了解铜绿假单胞菌(PA)的氨基糖苷类耐药机制,用纸片扩散法检测分离自鸡场的50株PA对6种氨基糖苷类药物的敏感性,用PCR法检测7种氨基糖苷类修饰酶(AMEs)基因和5种16 S rRNA甲基化酶基因。结果显示:50株PA中45株对氨基糖苷类药物耐药,36株表现出多种氨基糖苷类药物耐药。50株菌中共有45株检测到耐氨基糖苷类药物基因,总检出率为90.0%。AMEs基因aac(3)-Ⅱ、ant(3′′)-Ⅰ、aph(3′′)-Ⅰb、aph(6′)-Ⅰd、aac(6′)-Ⅰb、ant(2′′)-Ⅰ的阳性率分别为88.0%、50.0%、44.0%、24.0%、20.0%、4.0%,16 S rRNA甲基化酶armA基因的阳性率为2.0%,其余5种基因均未检出。提示PA对氨基糖苷类耐药与产AMEs和16 S rRNA甲基化酶有关。展开更多
文摘从16 S rRNA甲基化酶的发现、作用机制、基因环境、分布和起源等方面介绍了16 SrRNA甲基化酶介导的氨基糖苷类耐药机制。阐明16 S rRNA甲基化酶是在革兰氏阴性杆菌中新出现的介导对庆大霉素等氨基糖苷类高度耐药的酶;16 S rRNA甲基化酶基因位于质粒和转座子上,具有易于传播和扩散的特点,成为临床抗感染的重要问题。
文摘目的了解氨基糖苷类抗菌药物耐药的铜绿假单胞菌16S r RNA甲基化酶基因和氨基糖苷修饰酶基因的携带情况,探讨铜绿假单胞菌对氨基糖苷类药物的耐药机制。方法收集临床分离的氨基糖苷类抗菌药物耐药的铜绿假单胞菌35株,采用VITEK 2 Compact全自动微生物分析系统进行鉴定及体外药物敏感性试验,聚合酶链反应(PCR)检测arm-A、rmt-A、rmt-B、rmt-C、rmt-D 5种16S r RNA甲基化酶基因和aac(3)-Ⅰ、aac(3)-Ⅱ、aac(6')-Ⅰb、aac(6')-Ⅱ、ant(3″)-Ⅰ、ant(2″)-Ⅰ6种氨基糖苷修饰酶基因。结果对氨基糖苷类药物耐药的铜绿假单胞菌同时对多种其他抗菌药物耐药,仅碳青霉烯类的亚胺培南耐药率较低,为5.7%。21株检出rmt-B 16S r RNA甲基化酶基因,占60.0%;30株检出氨基糖苷修饰酶基因,占85.7%,其中28株检出aac(3)-Ⅱ基因,占80.0%,18株检出ant(3″)-Ⅰ基因,占51.4%,其余8种基因未检出。结论在铜绿假单胞菌对氨基糖苷类抗菌药物耐药的菌株中,检测出rmt-B 16S r RNA甲基化酶基因和aac(3)-Ⅱ、ant(3″)-Ⅰ氨基糖苷修饰酶基因,铜绿假单胞菌多重耐药现象严重。
基金the National Key Research and Development Program of China(2020YFE0205700,2022YFC2303900)the major projects of the National Natural Science Foundation of China(22193064)+2 种基金the Research Foundation for Youth Scholars of Beijing Technology and Business University(19008022271)the National Science and Technology Major Project(2018ZX10714002)the Science Foundation(2022SKLID303)of the State Key Laboratory of Infectious Disease Prevention and Control,China.
文摘Choosing the appropriate antibiotics to treat bacterial infections has grown more challenging as a result of the emergence of antibiotic-resistant bacteria.Aminoglycosides,as broad-spectrum antibiotics,are increasingly being used clinically;however,for most effective employment of aminoglycosides,a comprehensive understanding of aminoglycoside resistance genes’prevalence and dissemination is required.Therefore,to better understand the global resistance status of aminoglycoside antibiotics and the prevalence of antibiotic-resistance genes(ARGs)in various bacterial species,this systematic review gathered relevant data from multiple studies.Two primary resistance mechanisms-aminoglycoside enzymatic modification and 16S rRNA methylation-were assessed,and the prevalence of the corresponding ARGs was described.The coexistence of aminoglycoside ARGs with other ARGs was also demonstrated,as was the relationship between aminoglycoside ARGs and resistant phenotypes.The lack of effective therapeutic agents to combat resistant pathogens presents a real threat to public health.The combination of aminoglycosides with other antibiotics may provide a novel treatment strategy.
文摘目的调查一组耐药鲍曼不动杆菌对氨基糖苷类的耐药机制。方法收集2013年1至3月江苏省淮安市第一人民医院住院患者标本中分离到的鲍曼不动杆菌共32株,用分子鉴定法确认为鲍曼不动杆菌,再用聚合酶链反应(PCR)方法分析9种氨基糖苷类修饰酶基因与7种16S r RNA甲基化酶基因。结果本组32株耐药鲍曼不动杆菌共检出5种氨基糖苷类修饰酶基因:aac(2')-Ib 32株(100.0%)、aac(3)-I 15株(46.9%)、aac(6')-Ib 19株(59.4%)、ant(3'')-I 20株(62.5%)、aph(3')-I 19株(59.4%),与1种16S r RNA甲基化酶基因arm A 25株(78.1%)。阳性基因共分为7种检测模式,其中以aac(2')-Ib+aac(3)-I+aac(6')-Ib+ant(3'')-I+aph(3')-I+arm A等6种基因均阳性的模式最高,为12株(37.5%)。结论产5种氨基糖苷类修饰酶基因(aac(2')-Ib、aac(3)-I、aac(6')-Ib、ant(3'')-I、aph(3')-I)与1种16S r RNA甲基化酶基因arm A是本组耐药鲍曼不动杆菌对氨基糖苷类耐药的重要原因。在鲍曼不动杆菌临床分离株检出aac(2')-Ib型氨基糖苷类修饰酶基因为国内首次报道。
文摘为了解铜绿假单胞菌(PA)的氨基糖苷类耐药机制,用纸片扩散法检测分离自鸡场的50株PA对6种氨基糖苷类药物的敏感性,用PCR法检测7种氨基糖苷类修饰酶(AMEs)基因和5种16 S rRNA甲基化酶基因。结果显示:50株PA中45株对氨基糖苷类药物耐药,36株表现出多种氨基糖苷类药物耐药。50株菌中共有45株检测到耐氨基糖苷类药物基因,总检出率为90.0%。AMEs基因aac(3)-Ⅱ、ant(3′′)-Ⅰ、aph(3′′)-Ⅰb、aph(6′)-Ⅰd、aac(6′)-Ⅰb、ant(2′′)-Ⅰ的阳性率分别为88.0%、50.0%、44.0%、24.0%、20.0%、4.0%,16 S rRNA甲基化酶armA基因的阳性率为2.0%,其余5种基因均未检出。提示PA对氨基糖苷类耐药与产AMEs和16 S rRNA甲基化酶有关。