期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Highly Ordered Supramolecular Assembled Networks Tailored by Bioinspired H-Bonding Confinement for Recyclable Ion-Transport Materials 被引量:4
1
作者 Chen-Yu Shi Qi Zhang +3 位作者 Bang-Sen Wang Dan-Dan He He Tian Da-Hui Qu 《CCS Chemistry》 CSCD 2023年第6期1422-1432,共11页
Controlling dynamic molecular self-assembly to finely tune macroscopic properties offers chemical solutions to rational material design.Here we report that combining disulfide-mediated ring-opening polymerization with... Controlling dynamic molecular self-assembly to finely tune macroscopic properties offers chemical solutions to rational material design.Here we report that combining disulfide-mediated ring-opening polymerization withβ-sheet-like H-bonding self-assembly can drive a direct small-molecular assembly into a layered ionic network with precise architectural tunability and controllable functions as ion-transport membranes.This strategy enables a one-step evaporationinduced self-assembly from discrete small molecules to layered ionic networks with high crystallinity.The interlayer distances can be readily engineered with nanometer accuracy by varying the length of the oligopeptide side chain.The synergy of the layered structure and hydrophilic terminal groups facilitates the formation and ordering of interlayer water channels,endowing the resulting membranes with high efficiency in transporting ions.Moreover,the inherent dynamic nature of poly(disulfide)s allows chemical recycling to monomers under mild conditions.We foresee that the robust strategy of combining dynamic disulfide chemistry and noncovalent assembly can afford many opportunities in designing smart materials with unique functions and applications. 展开更多
关键词 dynamic chemistry poly(disulfide)s β-sheet-like H-bonds ion conductivity chemical recyclability
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部