Obstructive sleep apnea can worsen the prognosis of subarachnoid hemorrhage.Howeve r,the underlying mechanism remains unclear.In this study,we established a mouse model of subarachnoid hemorrhage using the endovascula...Obstructive sleep apnea can worsen the prognosis of subarachnoid hemorrhage.Howeve r,the underlying mechanism remains unclear.In this study,we established a mouse model of subarachnoid hemorrhage using the endovascular perforation method and exposed the mice to intermittent hypoxia for 8 hours daily for 2 consecutive days to simulate sleep apnea.We found that sleep apnea aggravated brain edema,increased hippocampal neuron apoptosis,and worsened neurological function in this mouse model of subarachnoid hemorrhage.Then,we established an in vitro HT-22 cell model of hemin-induced subarachnoid hemorrhage/intermittent hypoxia and found that the cells died,and lactate dehydrogenase release increased,after 48 hours.We further investigated the underlying mechanism and found that sleep apnea increased the expression of hippocampal neuroinflammatory factors interleukin-1β,interleukin-18,inte rleukin-6,nuclear factorκB,pyro ptosis-related protein caspase-1,pro-caspase-1,and NLRP3,promoted the prolife ration of astrocytes,and increased the expression of hypoxia-inducible factor 1αand apoptosis-associated speck-like protein containing a CARD,which are the key proteins in the hypoxia-inducible factor 1α/apoptosis-associated speck-like protein containing a CARD signaling pathway.We also found that knockdown of hypoxia-inducible factor 1αexpression in vitro greatly reduced the damage to HY22 cells.These findings suggest that sleep apnea aggravates early brain injury after subarachnoid hemorrhage by aggravating neuroinflammation and pyroptosis,at least in part through the hypoxia-inducible factor 1α/apoptosis-associated speck-like protein containing a CARD signaling pathway.展开更多
Keloid may induce severe impairment of life quality for the patients,although keloid is a cutaneous benign tumor.Collagen triple helix repeat containing protein 1 (Cthrc1) was identified as a novel gene that was origi...Keloid may induce severe impairment of life quality for the patients,although keloid is a cutaneous benign tumor.Collagen triple helix repeat containing protein 1 (Cthrc1) was identified as a novel gene that was originally found in adventitial fibroblasts after arterial injury.To address the role of Cthrcl in keloid,the expression level of Cthrcl was assessed in normal skin and keloid tissue,as well as in normal fibroblasts (NFs)and keloid fibroblasts (KFs)by using quantitative PCR,Western blotting and immunohistochemical analysis.The results showed that Cthrcl was increased in keloid tissue and KFs as compared with normal skin and NFs.Meanwhile,CCK8 and Transwell assays found the cellular proliferation and migration of KFs were increased as compared with NFs.Further,to verify the function of Cthrcl in NFs and K.Fs,we increased Cthrcl expression by transfecting lentivirns (LV) vectors LV-Cthrcl.The cellular proliferation and migration,collagen synthesis and the influence on TGF-β and YAP signaling were tested.The cellular proliferation and migration were increased in NFs-Cthrcl as compared with NFs-control.Meanwhile,YAP expression and nuclear-location was increased in NFs-Cthrcl.On the contrary,when Cthrcl was overexpressed in KFs,the cellular migration was suppressed and YAP expression was reduced and transferred to cytoplasm in KFs-Cthrcl as compared with KFs-control.But the expression level of collagen I was decreased and pSmad2/3 nucleus transfer was suppressed in both NFs-Cthrc1 and KFs-Cthrc1 by using Western blotting and immunofluorescence.Increased Cthrcl activated NFs by promoting YAP nucleus translocation,whereas suppressed KFs by inhibiting YAP nucleus translocation.Enhanced Cthrcl decreased collagen I in both NFs and KFs by inhibiting TGF-β/Smad pathway.In conclusion,Cthrcl may play a role in the pathogenesis of keloid by inhibiting collagen synthesis and fibroblasts migration via suppressing TGF-β/Smad pathway and YAP nucleus translocation.展开更多
Axonal growth inhibitors are released during traumatic injuries to the adult mammalian central nervous system, including after spinal cord injury. These molecules accumulate at the injury site and form a highly inhibi...Axonal growth inhibitors are released during traumatic injuries to the adult mammalian central nervous system, including after spinal cord injury. These molecules accumulate at the injury site and form a highly inhibitory environment for axonal regeneration. Among these inhibitory molecules, myelinassociated inhibitors, including neurite outgrowth inhibitor A, oligodendrocyte myelin glycoprotein, myelin-associated glycoprotein, chondroitin sulfate proteoglycans and repulsive guidance molecule A are of particular importance. Due to their inhibitory nature, they represent exciting molecular targets to study axonal inhibition and regeneration after central injuries. These molecules are mainly produced by neurons, oligodendrocytes, and astrocytes within the scar and in its immediate vicinity. They exert their effects by binding to specific receptors, localized in the membranes of neurons. Receptors for these inhibitory cues include Nogo receptor 1, leucine-rich repeat, and Ig domain containing 1 and p75 neurotrophin receptor/tumor necrosis factor receptor superfamily member 19(that form a receptor complex that binds all myelin-associated inhibitors), and also paired immunoglobulin-like receptor B. Chondroitin sulfate proteoglycans and repulsive guidance molecule A bind to Nogo receptor 1, Nogo receptor 3, receptor protein tyrosine phosphatase σ and leucocyte common antigen related phosphatase, and neogenin, respectively. Once activated, these receptors initiate downstream signaling pathways, the most common amongst them being the Rho A/ROCK signaling pathway. These signaling cascades result in actin depolymerization, neurite outgrowth inhibition, and failure to regenerate after spinal cord injury. Currently, there are no approved pharmacological treatments to overcome spinal cord injuries other than physical rehabilitation and management of the array of symptoms brought on by spinal cord injuries. However, several novel therapies aiming to modulate these inhibitory proteins and/or their receptors are under investigation in ongoing clinical trials. Investigation has also been demonstrating that combinatorial therapies of growth inhibitors with other therapies, such as growth factors or stem-cell therapies, produce stronger results and their potential application in the clinics opens new venues in spinal cord injury treatment.展开更多
AIM:To characterize the regeneration-associated stem cell-related phenotype of hepatocyte-derived growth factor receptor(HGFR)-expressing cells in active ulcerative colitis(UC).METHODS:On the whole 38 peripheral blood...AIM:To characterize the regeneration-associated stem cell-related phenotype of hepatocyte-derived growth factor receptor(HGFR)-expressing cells in active ulcerative colitis(UC).METHODS:On the whole 38 peripheral blood samples and 38 colonic biopsy samples from 18 patients with histologically proven active UC and 20 healthy control subjects were collected.After preparing tissue microarrays and blood smears HGFR,caudal type homeobox 2(CDX2),prominin-1(CD133) and Musashi-1conventional and double fluorescent immunolabelings were performed.Immunostained samples were digitalized using high-resolution Mirax Desk instrument,and analyzed with the Mirax TMA Module software.For semiquantitative counting of immunopositive lamina propria(LP) cells 5 fields of view were counted at magnification x 200 in each sample core,then mean ± SD were determined.In case of peripheral blood smears,30 fields of view with 100 μm diameter were evaluated in every sample and the number of immunopositive cells(mean ± SD) was determined.Using 337 nm UVA Laser MicroDissection system at least 5000 subepithelial cells from the lamina propria were collected.Gene expression analysis of HGFR,CDX2,CD133,leucine-rich repeat-containing G-protein coupled receptor 5(Lgr5),Musashi-1 and cytokeratin20(CK20) were performed in both laser-microdisscted samples and blood samples by using real time reverse transcription polymerase chain reaction(RT-PCR).RESULTS:By performing conventional and double fluorescent immunolabelings confirmed by RT-PCR,higher number of HGFR(blood:6.7 ± 1.22 vs 38.5 ±3.18;LP:2.25 ± 0.85 vs 9.22 ± 0.65;P < 0.05),CDX2(blood:0 vs 0.94 ± 0.64;LP:0.75 ± 0.55 vs 2.11± 0.75;P < 0.05),CD133(blood:1.1 ± 0.72 vs 8.3± 1.08;LP:11.1 ± 0.85 vs 26.28 ± 1.71;P < 0.05)and Musashi-1(blood and LP:0 vs scattered) positive cells were detected in blood and lamina propria of UC samples as compared to controls.HGFR/CDX2(blood:0 vs 1± 0.59;LP:0.8 ± 0.69 vs 2.06 ± 0.72,P < 0.05)and Musashi-1/CDX2(blood and LP:0 vs scattered) coexpressions were found in blood and lamina propria of UC samples.HGFR/CD133 and CD133/CDX2 coexpressions appeared only in UC lamina propria samples.CDX2,Lgr5 and Musashi-1 expressions in UC blood samples were not accompanied by CK20 mRNA expression.CONCLUSION:In active UC,a portion of circulating HGFR-expressing cells are committed to the epithelial lineage,and may participate in mucosal regeneration by undergoing mesenchymal-to-epithelial transition.展开更多
基金the Natural Science Foundation of Jiangsu Province(Youth Program),No.BK20190129National Scientific Program of Jiangsu Colleges and Universities of China,No.19KJB320012(both to LY)。
文摘Obstructive sleep apnea can worsen the prognosis of subarachnoid hemorrhage.Howeve r,the underlying mechanism remains unclear.In this study,we established a mouse model of subarachnoid hemorrhage using the endovascular perforation method and exposed the mice to intermittent hypoxia for 8 hours daily for 2 consecutive days to simulate sleep apnea.We found that sleep apnea aggravated brain edema,increased hippocampal neuron apoptosis,and worsened neurological function in this mouse model of subarachnoid hemorrhage.Then,we established an in vitro HT-22 cell model of hemin-induced subarachnoid hemorrhage/intermittent hypoxia and found that the cells died,and lactate dehydrogenase release increased,after 48 hours.We further investigated the underlying mechanism and found that sleep apnea increased the expression of hippocampal neuroinflammatory factors interleukin-1β,interleukin-18,inte rleukin-6,nuclear factorκB,pyro ptosis-related protein caspase-1,pro-caspase-1,and NLRP3,promoted the prolife ration of astrocytes,and increased the expression of hypoxia-inducible factor 1αand apoptosis-associated speck-like protein containing a CARD,which are the key proteins in the hypoxia-inducible factor 1α/apoptosis-associated speck-like protein containing a CARD signaling pathway.We also found that knockdown of hypoxia-inducible factor 1αexpression in vitro greatly reduced the damage to HY22 cells.These findings suggest that sleep apnea aggravates early brain injury after subarachnoid hemorrhage by aggravating neuroinflammation and pyroptosis,at least in part through the hypoxia-inducible factor 1α/apoptosis-associated speck-like protein containing a CARD signaling pathway.
基金This work was supported by the National Natural Science Foundation of China (No.81472886 and No. 81172588).
文摘Keloid may induce severe impairment of life quality for the patients,although keloid is a cutaneous benign tumor.Collagen triple helix repeat containing protein 1 (Cthrc1) was identified as a novel gene that was originally found in adventitial fibroblasts after arterial injury.To address the role of Cthrcl in keloid,the expression level of Cthrcl was assessed in normal skin and keloid tissue,as well as in normal fibroblasts (NFs)and keloid fibroblasts (KFs)by using quantitative PCR,Western blotting and immunohistochemical analysis.The results showed that Cthrcl was increased in keloid tissue and KFs as compared with normal skin and NFs.Meanwhile,CCK8 and Transwell assays found the cellular proliferation and migration of KFs were increased as compared with NFs.Further,to verify the function of Cthrcl in NFs and K.Fs,we increased Cthrcl expression by transfecting lentivirns (LV) vectors LV-Cthrcl.The cellular proliferation and migration,collagen synthesis and the influence on TGF-β and YAP signaling were tested.The cellular proliferation and migration were increased in NFs-Cthrcl as compared with NFs-control.Meanwhile,YAP expression and nuclear-location was increased in NFs-Cthrcl.On the contrary,when Cthrcl was overexpressed in KFs,the cellular migration was suppressed and YAP expression was reduced and transferred to cytoplasm in KFs-Cthrcl as compared with KFs-control.But the expression level of collagen I was decreased and pSmad2/3 nucleus transfer was suppressed in both NFs-Cthrc1 and KFs-Cthrc1 by using Western blotting and immunofluorescence.Increased Cthrcl activated NFs by promoting YAP nucleus translocation,whereas suppressed KFs by inhibiting YAP nucleus translocation.Enhanced Cthrcl decreased collagen I in both NFs and KFs by inhibiting TGF-β/Smad pathway.In conclusion,Cthrcl may play a role in the pathogenesis of keloid by inhibiting collagen synthesis and fibroblasts migration via suppressing TGF-β/Smad pathway and YAP nucleus translocation.
基金a Ph D fellowship by FCT-Fundacao para a Ciência Tecnologia (SFRH/BD/135868/2018)(to SSC)。
文摘Axonal growth inhibitors are released during traumatic injuries to the adult mammalian central nervous system, including after spinal cord injury. These molecules accumulate at the injury site and form a highly inhibitory environment for axonal regeneration. Among these inhibitory molecules, myelinassociated inhibitors, including neurite outgrowth inhibitor A, oligodendrocyte myelin glycoprotein, myelin-associated glycoprotein, chondroitin sulfate proteoglycans and repulsive guidance molecule A are of particular importance. Due to their inhibitory nature, they represent exciting molecular targets to study axonal inhibition and regeneration after central injuries. These molecules are mainly produced by neurons, oligodendrocytes, and astrocytes within the scar and in its immediate vicinity. They exert their effects by binding to specific receptors, localized in the membranes of neurons. Receptors for these inhibitory cues include Nogo receptor 1, leucine-rich repeat, and Ig domain containing 1 and p75 neurotrophin receptor/tumor necrosis factor receptor superfamily member 19(that form a receptor complex that binds all myelin-associated inhibitors), and also paired immunoglobulin-like receptor B. Chondroitin sulfate proteoglycans and repulsive guidance molecule A bind to Nogo receptor 1, Nogo receptor 3, receptor protein tyrosine phosphatase σ and leucocyte common antigen related phosphatase, and neogenin, respectively. Once activated, these receptors initiate downstream signaling pathways, the most common amongst them being the Rho A/ROCK signaling pathway. These signaling cascades result in actin depolymerization, neurite outgrowth inhibition, and failure to regenerate after spinal cord injury. Currently, there are no approved pharmacological treatments to overcome spinal cord injuries other than physical rehabilitation and management of the array of symptoms brought on by spinal cord injuries. However, several novel therapies aiming to modulate these inhibitory proteins and/or their receptors are under investigation in ongoing clinical trials. Investigation has also been demonstrating that combinatorial therapies of growth inhibitors with other therapies, such as growth factors or stem-cell therapies, produce stronger results and their potential application in the clinics opens new venues in spinal cord injury treatment.
基金Cell Analysis Laboratory, 2nd Department of Internal Medicine, and the 1st Department of Pathology and Experimental Oncology, Semmelweis University for their technical support
文摘AIM:To characterize the regeneration-associated stem cell-related phenotype of hepatocyte-derived growth factor receptor(HGFR)-expressing cells in active ulcerative colitis(UC).METHODS:On the whole 38 peripheral blood samples and 38 colonic biopsy samples from 18 patients with histologically proven active UC and 20 healthy control subjects were collected.After preparing tissue microarrays and blood smears HGFR,caudal type homeobox 2(CDX2),prominin-1(CD133) and Musashi-1conventional and double fluorescent immunolabelings were performed.Immunostained samples were digitalized using high-resolution Mirax Desk instrument,and analyzed with the Mirax TMA Module software.For semiquantitative counting of immunopositive lamina propria(LP) cells 5 fields of view were counted at magnification x 200 in each sample core,then mean ± SD were determined.In case of peripheral blood smears,30 fields of view with 100 μm diameter were evaluated in every sample and the number of immunopositive cells(mean ± SD) was determined.Using 337 nm UVA Laser MicroDissection system at least 5000 subepithelial cells from the lamina propria were collected.Gene expression analysis of HGFR,CDX2,CD133,leucine-rich repeat-containing G-protein coupled receptor 5(Lgr5),Musashi-1 and cytokeratin20(CK20) were performed in both laser-microdisscted samples and blood samples by using real time reverse transcription polymerase chain reaction(RT-PCR).RESULTS:By performing conventional and double fluorescent immunolabelings confirmed by RT-PCR,higher number of HGFR(blood:6.7 ± 1.22 vs 38.5 ±3.18;LP:2.25 ± 0.85 vs 9.22 ± 0.65;P < 0.05),CDX2(blood:0 vs 0.94 ± 0.64;LP:0.75 ± 0.55 vs 2.11± 0.75;P < 0.05),CD133(blood:1.1 ± 0.72 vs 8.3± 1.08;LP:11.1 ± 0.85 vs 26.28 ± 1.71;P < 0.05)and Musashi-1(blood and LP:0 vs scattered) positive cells were detected in blood and lamina propria of UC samples as compared to controls.HGFR/CDX2(blood:0 vs 1± 0.59;LP:0.8 ± 0.69 vs 2.06 ± 0.72,P < 0.05)and Musashi-1/CDX2(blood and LP:0 vs scattered) coexpressions were found in blood and lamina propria of UC samples.HGFR/CD133 and CD133/CDX2 coexpressions appeared only in UC lamina propria samples.CDX2,Lgr5 and Musashi-1 expressions in UC blood samples were not accompanied by CK20 mRNA expression.CONCLUSION:In active UC,a portion of circulating HGFR-expressing cells are committed to the epithelial lineage,and may participate in mucosal regeneration by undergoing mesenchymal-to-epithelial transition.